20.已知命題p:曲線y=x2+(2m-3)x+1與x軸相交于不同的兩點;命題$q:\frac{x^2}{m}+\frac{y^2}{2}=1$表示焦點在x軸上的橢圓.若“p∨q”為真命題,“p∧q”為假命題,求m取值范圍.

分析 若“p∨q”為真命題,“p∧q”為假命題,則p,q一真一假,進而可得m取值范圍.

解答 解:命題p為真?△=(2m-3)2-4>0?$m<\frac{1}{2}或m>\frac{5}{2}$…(3分)
若命題q為真?m>2…(5分)
∵“p且q”是假命題,“p或q”是真命題
∴p,q一真一假   …(7分)
若p真q假,則$\left\{\begin{array}{l}m<\frac{1}{2}或m>\frac{5}{2}\\ m≤2\end{array}\right.$∴$m<\frac{1}{2}$…(9分)
若q真p假,則$\left\{\begin{array}{l}\frac{1}{2}≤m≤\frac{5}{2}\\ m>2\end{array}\right.$∴$2<m≤\frac{5}{2}$…(11分)
綜上,$m<\frac{1}{2}$或$2<m≤\frac{5}{2}$…(12分)

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,二次函數(shù)的圖象和性質(zhì),橢圓的標準方程,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow$=(b1,b2),定義一種向量積:$\overrightarrow{a}$?$\overrightarrow$=(a1b1,a2b2),已知$\vec m=(1,\frac{1}{2}),\vec n=(0,1)$,且點P(x,y)在函數(shù)$y=sin\frac{x}{2}$的圖象上運動,點q在函數(shù)y=f(x)的圖象上運動,且點p和點q滿足:$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O為坐標原點),則函數(shù)y=f(x)的最大值A及最小正周期T分別為( 。
A.1,πB.1,4πC.$\frac{3}{2},π$D.$\frac{3}{2},4π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在極坐標系中,過點A(6,π)作圓ρ=-4cosθ的切線,則切線長為( 。
A.6B.$2\sqrt{3}$C.$4\sqrt{3}$D.$2\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a為常數(shù),函數(shù)f(x)=ax3-3ax2-(x-3)ex+1在(0,2)內(nèi)有兩個極值點,則實數(shù)a的取值范圍為( 。
A.$(-∞,\frac{e}{3})$B.$(\frac{e}{3},{e^2})$C.$(\frac{e}{3},\frac{e^2}{6})$D.$(\frac{e}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示,已知P、Q是單位正方體ABCD-A1B1C1D1的面A1B1BA和面ABCD對角線上的點,且A1P=AQ,證明:PQ∥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足acosA=bcosB,那么△ABC的形狀一定是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知實數(shù)x,y滿足方程(x-3)2+(y-3)2=6,求
(I)$\frac{y}{x}$的最大值與最小值;
(Ⅱ)$\sqrt{(x-2)^{2}+{y}^{2}}$的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{16}$=1上的一點P到橢圓一個焦點的距離為3,到另一焦點距離為7,則m等于( 。
A.10B.5C.15D.25

查看答案和解析>>

同步練習冊答案