1.用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個(gè)數(shù)為72(用數(shù)字回答)

分析 用1、2、3、4、5組成無重復(fù)數(shù)字的五位奇數(shù),可以看作是填5個(gè)空,要求個(gè)位是奇數(shù),其它位置無條件限制,因此先從3個(gè)奇數(shù)中任選1個(gè)填入,其它4個(gè)數(shù)在4個(gè)位置上全排列即可.

解答 解:要組成無重復(fù)數(shù)字的五位奇數(shù),則個(gè)位只能排1,3,5中的一個(gè)數(shù),共有3種排法,
然后還剩4個(gè)數(shù),剩余的4個(gè)數(shù)可以在十位到萬位4個(gè)位置上全排列,共有A44=24種排法.
由分步乘法計(jì)數(shù)原理得,由1、2、3、4、5組成的無重復(fù)數(shù)字的五位數(shù)中奇數(shù)有3×24=72個(gè).
故答案為:72

點(diǎn)評(píng) 本題考查了排列、組合及簡(jiǎn)單的計(jì)數(shù)問題,此題是有條件限制排列,解答的關(guān)鍵是做到合理的分布,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在極坐標(biāo)系中,過點(diǎn)A(6,π)作圓ρ=-4cosθ的切線,則切線長(zhǎng)為( 。
A.6B.$2\sqrt{3}$C.$4\sqrt{3}$D.$2\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且滿足acosA=bcosB,那么△ABC的形狀一定是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知實(shí)數(shù)x,y滿足方程(x-3)2+(y-3)2=6,求
(I)$\frac{y}{x}$的最大值與最小值;
(Ⅱ)$\sqrt{(x-2)^{2}+{y}^{2}}$的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=asinx-bcosx(其中a,b為正實(shí)數(shù))的圖象關(guān)于直線$x=-\frac{π}{6}$對(duì)稱,且?x1,x2∈R,x1≠x2,f(x1)f(x2)≤4恒成立,則下列結(jié)論正確的是( 。
A.$a=\sqrt{3}$,b=1
B.函數(shù)f(x)在區(qū)間$[{\frac{π}{6},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象的一個(gè)對(duì)稱中心為$({\frac{2}{3}π,0})$
D.不等式f(x1)f(x2)≤4取到等號(hào)時(shí)|x2-x1|的最小值為2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=loga(x+1),g(x)=loga(4-2x),a>0且a≠1.
(1)求函數(shù)y=f(x)-g(x)的定義域;
(2)求使不等式f(x)>g(x)成立的實(shí)數(shù)x的取值范圍;
(3)求函數(shù)y=2f(x)-g(x)-f(1)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)求過直線x-2y+3=0和2x+y-4=0的交點(diǎn),斜率為1 的直線方程;
(2)過點(diǎn)A(-1,2)的直線l的傾斜角β是直線l1:2x-y+1=0的傾斜角α的2倍,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{16}$=1上的一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為3,到另一焦點(diǎn)距離為7,則m等于( 。
A.10B.5C.15D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,點(diǎn)E、F分別為AB和PC的中點(diǎn),連接EF、BF.
(1)求證:直線EF∥平面PAD;
(2)求三棱錐F-PBE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案