【題目】如圖,已知雙曲線 =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , |F1F2|=4,P是雙曲線右支上一點(diǎn),直線PF2交y軸于點(diǎn)A,△APF1的內(nèi)切圓切邊PF1于點(diǎn)Q,若|PQ|=1,則雙曲線的離心率為

【答案】2
【解析】解:∵雙曲線的焦距為4,

∴|F1F2|=4,∴c=2

∵|PQ|=1,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,

∴根據(jù)切線長(zhǎng)定理可得AM=AN,F(xiàn)1M=F1Q,PN=PQ,

∵|AF1|=|AF2|,

∴AM+F1M=AN+PN+NF2

∴F1M=PN+NF2=PQ+PF2

∴|PF1|﹣|PF2|=F1Q+PQ﹣PF2=F1M+PQ﹣PF2=PQ+PF2+PQ﹣PF2=2PQ=2,

即2a=2,則a=1,

∵a=1,c=2

∴雙曲線的離心率是e= =2.

所以答案是:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,內(nèi)角A,B,C成等差數(shù)列,其對(duì)邊a,b,c滿足2b2=3ac,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點(diǎn)的中點(diǎn).

)求證: 平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的函數(shù)關(guān)系式是

銷售量g(t)與時(shí)間t的函數(shù)關(guān)系式是g(t)=- (0≤t≤100),求這種商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)ax (a1)

(1)判斷函數(shù)f(x)(1,+∞)上的單調(diào)性,并證明你的判斷;

(2)a3,求方程f(x)0的正根(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=1,且an+1= (n∈N*).
(1)證明:數(shù)列{ }是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anan+1 , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a0),

(1)若a=﹣1,求函數(shù)的零點(diǎn);

(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某紡織廠訂購(gòu)一批棉花,其各種長(zhǎng)度的纖維所占的比例如下表所示:

(1)請(qǐng)估計(jì)這批棉花纖維的平均長(zhǎng)度與方差.

(2)如果規(guī)定這批棉花纖維的平均長(zhǎng)度為4.90厘米,方差不超過(guò)1.200,兩者允許誤差均不超過(guò)0.10視為合格產(chǎn)品.請(qǐng)你估計(jì)這批棉花的質(zhì)量是否合格?

查看答案和解析>>

同步練習(xí)冊(cè)答案