【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點(diǎn)的中點(diǎn).

)求證: 平面

)求證:平面平面

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】試題分析:

(1)連接,連接.利用幾何關(guān)系可證得,結(jié)合線面平行的判斷定理則有直線平面

(2)利用線面垂直的定義有,結(jié)合可證得平面,則,由幾何關(guān)系有,則平面,利用面面垂直的判斷定理即可證得平面平面

試題解析:

)連接,連接

因?yàn)榫匦蔚膶?duì)角線互相平分,

所以在矩形中,

中點(diǎn),

所以在中,

是中位線,

所以,

因?yàn)?/span>平面, 平面,所以平面

)因?yàn)?/span>平面, 平面

所以;

在矩形中有,

,

所以平面

因?yàn)?/span>平面,

所以

由已知,三角形是等腰直角三角形, 是斜邊的中點(diǎn),

所以,

因?yàn)?/span>,

所以平面,

因?yàn)?/span>平面

所以平面平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐C﹣OAB中,CO⊥平面AOB,OA=OB=2OC=2,AB=2 ,D為AB的中點(diǎn).
(Ⅰ)求證:AB⊥平面COD;
(Ⅱ)若動(dòng)點(diǎn)E滿足CE∥平面AOB,問(wèn):當(dāng)AE=BE時(shí),平面ACE與平面AOB所成的銳二面角是否為定值?若是,求出該銳二面角的余弦值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).

(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;

(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對(duì)任意的x∈[1,a+1],總有f(x)≤0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a≥0,試討論函數(shù)g(x)=lnx+ax2﹣(2a+1)x在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對(duì)任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對(duì)任意的,都有關(guān)于對(duì)稱。

其中所有正確的結(jié)論序號(hào)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】濮陽(yáng)市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬(wàn)元)的數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號(hào)x

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測(cè)該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計(jì)公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體PABCD的直觀圖及三視圖如圖所示,E、F分別為PC、BD的中點(diǎn).

I)求證:EF∥平面PAD;

II)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線 =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , |F1F2|=4,P是雙曲線右支上一點(diǎn),直線PF2交y軸于點(diǎn)A,△APF1的內(nèi)切圓切邊PF1于點(diǎn)Q,若|PQ|=1,則雙曲線的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= (|AB|為線段AB的長(zhǎng)度)叫做曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”,給出以下命題: ①函數(shù)y=x3圖象上兩點(diǎn)A與B的橫坐標(biāo)分別為1和﹣1,則φ(A,B)=0;
②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
③設(shè)點(diǎn)A,B是拋物線y=x2+1上不同的兩點(diǎn),則φ(A,B)≤2;
④設(shè)曲線y=ex(e是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn)A(x1 , y1),B(x2 , y2),則φ(A,B)<1.
其中真命題的序號(hào)為 . (將所有真命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案