【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a0),

(1)若a=﹣1,求函數(shù)的零點(diǎn);

(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.

【答案】(1)當(dāng)a=﹣1時(shí),函數(shù)f(x)的零點(diǎn)是1;(2)﹣1a0a﹣2.

【解析】試題分析:(1)f(x)=﹣x2+2x﹣1=0,求解即可;

(2)討論當(dāng)a=0時(shí)和當(dāng)a0時(shí)二次函數(shù)在區(qū)間(0,1]的零點(diǎn)分別求參數(shù)范圍即可.

試題解析:

(1)當(dāng)a=﹣1時(shí),f(x)=﹣x2+2x﹣1,

f(x)=﹣x2+2x﹣1=0,

解得x=1,

∴當(dāng)a=﹣1時(shí),函數(shù)f(x)的零點(diǎn)是1.

(2)①當(dāng)a=0時(shí),2x﹣2=0x=1,符合題意.

當(dāng)a0時(shí),f(x)=ax2+2x﹣2﹣a=a(x﹣1)(x+),

x1=1,x2=﹣,

由于函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),則﹣1或﹣0,

解得﹣1a0a﹣2,

綜上可得,a的取值范圍為﹣1a0a﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).

(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;

(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對(duì)任意的x∈[1,a+1],總有f(x)≤0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體PABCD的直觀圖及三視圖如圖所示,E、F分別為PCBD的中點(diǎn).

I)求證:EF∥平面PAD;

II)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線 =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , |F1F2|=4,P是雙曲線右支上一點(diǎn),直線PF2交y軸于點(diǎn)A,△APF1的內(nèi)切圓切邊PF1于點(diǎn)Q,若|PQ|=1,則雙曲線的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,g(x)=lnx+ (a>0).
(1)求函數(shù)f(x)的極值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,則對(duì)于命題p:abcd∈(0,1)和命題q:a+b+c+d∈[e+e1﹣2,e2+e2﹣2)真假的判斷,正確的是(
A.p假q真
B.p假q假
C.p真q真
D.p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,且(n+1)a +anan+1﹣na =0對(duì)n∈N*都成立.
(1)求{an}的通項(xiàng)公式;
(2)記bn=a2n1a2n+1 , 數(shù)列{bn}的前n項(xiàng)和為Tn , 證明:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= (|AB|為線段AB的長(zhǎng)度)叫做曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”,給出以下命題: ①函數(shù)y=x3圖象上兩點(diǎn)A與B的橫坐標(biāo)分別為1和﹣1,則φ(A,B)=0;
②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
③設(shè)點(diǎn)A,B是拋物線y=x2+1上不同的兩點(diǎn),則φ(A,B)≤2;
④設(shè)曲線y=ex(e是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn)A(x1 , y1),B(x2 , y2),則φ(A,B)<1.
其中真命題的序號(hào)為 . (將所有真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按照題目要求獨(dú)立完成.規(guī)定:至少正確完成其中2道題的便可通過(guò).已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.
(Ⅰ)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計(jì)算其數(shù)學(xué)期望;
(Ⅱ)請(qǐng)分析比較甲、乙兩人誰(shuí)的面試通過(guò)的可能性大?

查看答案和解析>>

同步練習(xí)冊(cè)答案