A. | (0,2] | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,1] | D. | [$\frac{1}{2}$,$\frac{5}{4}$] |
分析 利用積化和差公式化簡2sinφcos(ωx+φ)=sin(ωx+2φ)-sinωx.可將函數(shù)化為y=Asin(ωx+φ)的形式,在(π,$\frac{3π}{2}$)上單調(diào)遞減,結(jié)合三角函數(shù)的圖象和性質(zhì),建立關(guān)系可求ω的取值范圍.
解答 解:函數(shù)f(x)=sin(ωx+2φ)-2sinφcos(ωx+φ)(ω>0,φ∈R).
化簡可得:f(x)=sin(ωx+2φ)-sin(ωx+2φ)+sinωx
=sinωx,
由$\frac{π}{2}$+$2kπ≤ωx≤2kπ+\frac{3π}{2}$,(k∈Z)上單調(diào)遞減,
得:$\frac{π}{2ω}$+$\frac{2kπ}{ω}≤x≤\frac{2kπ}{ω}+\frac{3π}{2ω}$,
∴函數(shù)f(x)的單調(diào)減區(qū)間為:[$\frac{2kπ}{ω}$$+\frac{π}{2ω}$,$\frac{2kπ}{ω}+\frac{3π}{2ω}$],(k∈Z).
∵在(π,$\frac{3π}{2}$)上單調(diào)遞減,
可得:$\left\{\begin{array}{l}{\frac{2kπ}{ω}+\frac{π}{2ω}≤π}\\{\frac{2kπ}{ω}+\frac{3π}{2ω}≥\frac{3π}{2}}\end{array}\right.$⇒$\left\{\begin{array}{l}{2k+\frac{1}{2}≤ω}\\{\frac{4k}{3}+1≥ω}\end{array}\right.$,(k∈Z).
∵ω>0,
當(dāng)k=0時,
可得:$\frac{1}{2}≤$ω≤1.
考查選項,故選C.
點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2π | C. | $2\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈(-∞,0),x3+x<0 | B. | ?x∈(-∞,0),x3+x≥0 | ||
C. | $?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}<0$ | D. | $?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}≥0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù)區(qū)間 | [50,70] | [70,90] | [90,110] | [110,130] | [130,150] |
人數(shù) | 2 | 8 | 32 | 38 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2i | B. | 2i | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{3}$,+∞) | B. | [2,+∞) | C. | ($\frac{1}{3}$,2) | D. | [$\frac{1}{3}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com