20.命題“?x∈[0,+∞],x3+x≥0”的否定是( 。
A.?x∈(-∞,0),x3+x<0B.?x∈(-∞,0),x3+x≥0
C.$?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}<0$D.$?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}≥0$

分析 本題中的命題是一個(gè)全稱(chēng)命題,其否定是特稱(chēng)命題,依據(jù)全稱(chēng)命題的否定書(shū)寫(xiě)形式寫(xiě)出命題的否定即可

解答 解:∵命題“?x∈[0,+∞],x3+x≥0”,
∴命題的否定是$?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}<0$,
故選C.

點(diǎn)評(píng) 本題考查命題的否定,解題的關(guān)鍵是掌握并理解命題否定的書(shū)寫(xiě)方法規(guī)則,全稱(chēng)命題的否定是特稱(chēng)命題,特稱(chēng)命題的否定是全稱(chēng)命題,書(shū)寫(xiě)時(shí)注意量詞的變化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知圓${x^2}+{y^2}+mx-\frac{1}{4}=0$與拋物線(xiàn)$y=\frac{1}{4}{x^2}$的準(zhǔn)線(xiàn)相切,則m=( 。
A.$±2\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.直線(xiàn)l1:y=kx-1與直線(xiàn)l2:x+y-1=0的交點(diǎn)位于第一象限則k的范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某計(jì)算器有兩個(gè)數(shù)據(jù)輸入口M1,M2一個(gè)數(shù)據(jù)輸出口N,當(dāng)M1,M2分別輸入正整數(shù)1時(shí),輸出口N輸出2,當(dāng)M1輸入正整數(shù)m1,M2輸入正整數(shù)m2時(shí),N的輸出是n;當(dāng)M1輸入正整數(shù)m1,M2輸入正整數(shù)m2+1時(shí),N的輸出是n+5;當(dāng)M1輸入正整數(shù)m1+1,MM2輸入正整數(shù)m2時(shí),N的輸出是n+4.則當(dāng)M1輸入60,M2輸入50時(shí),N的輸出是( 。
A.494B.492C.485D.483

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}的通項(xiàng)公式an=$\frac{1}{(n+1)^{2}}$(n∈N*),記bn=(1-a1)(1-a2)…(1-an),試通過(guò)計(jì)算b1,b2,b3的值,推測(cè)出{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的非負(fù)半軸,建立平面直角坐標(biāo)系xOy,若將曲線(xiàn)C向左平移1個(gè)單位長(zhǎng)度后就得到了曲線(xiàn)C1,再將曲線(xiàn)C1上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的$\sqrt{3}$倍,縱坐標(biāo)保持不變就得到了曲線(xiàn)C2,已知直線(xiàn)l:x-y-6=0.
(1)求曲線(xiàn)C1上的點(diǎn)到直線(xiàn)l的距離的最大值;
(2)過(guò)點(diǎn)M(-1,0)且與直線(xiàn)l平行的直線(xiàn)l1交C2于A,B兩點(diǎn),求點(diǎn)M到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}的前五項(xiàng)依次為$0,\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2},\frac{{\sqrt{15}}}{5},\frac{{\sqrt{6}}}{3}$,請(qǐng)參考前四項(xiàng)歸納猜想出一個(gè)通項(xiàng)公式,且第五項(xiàng)也滿(mǎn)足猜想,你的猜想結(jié)果是an=$\sqrt{\frac{n-1}{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=sin(ωx+2φ)-2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,$\frac{3π}{2}$)上單調(diào)遞減,則ω的取值范圍是( 。
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,1]D.[$\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|x-4|,g(x)=a|x|,a∈R.
(Ⅰ)當(dāng)a=2時(shí),解關(guān)于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)-4對(duì)任意x∈R恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案