16.在平面直角坐標系xOy中,與原點位于直線3x+2y+5=0同一側(cè)的點是( 。
A.(-3,4)B.(-3,-2)C.(-3,-4)D.(0,-3)

分析 二元一次不等式的表示的平面區(qū)域表示的點的特點判斷即可.

解答 解:當(dāng)x=0,y=0時,0+0+5>0,
對于A:當(dāng)x=-3,y=4時,-9+8+5>0,故滿足,
對于B:當(dāng)x=-3,y=-2時,-9-4+5<0,故不滿足,
對于C:x=-3,y=-4,-9-8+5<0,故不滿足,
對于D:x=-3,y=-2時,0-6+5<0,故不滿足,
故選:A

點評 本題考查了二元一次不等式的表示的平面區(qū)域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為$\frac{1}{2}$.現(xiàn)有10件產(chǎn)品,其中6是一等品,4件是二等品.
(Ⅰ)隨機選取3件產(chǎn)品,設(shè)至少有一件通過檢測為事件A,求事件A的概率;
(Ⅱ)隨機選取3件產(chǎn)品,其中一等品的件數(shù)記為X,求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦點F且與一條漸近線垂直的直線與兩條漸近線相交于A,B兩點,若$\overrightarrow{BF}=2\overrightarrow{FA}$,則雙曲線的離心率為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=1,且點P(an,an+1)在直線y=x+2上;數(shù)列{bn}的前n項和為Sn,滿足Sn=2bn-2,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=anbn,數(shù)列{cn}的前n項和為Tn,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果函數(shù)y=f(x)在定義域內(nèi)存在區(qū)間[a,b],使f(x)在[a,b]上的值域是[2a,2b],那么稱f(x)為“倍增函數(shù)”.若函數(shù)f(x)=ln(ex+m)為“倍增函數(shù)”,則實數(shù)m的取值范圍是( 。
A.$(-\frac{1}{4},+∞)$B.$(-\frac{1}{2},0)$C.(-1,0)D.$(-\frac{1}{4},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在三個數(shù)${3^{\frac{1}{2}}},\frac{1}{3},{log_3}2$中,最小的數(shù)是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.一質(zhì)點從坐標原點出發(fā)運動,每次它可選擇“上”,“下”,“左”,“右”中的一個方向移動一個長度單位.則移動4次又回到原點的不同的移動方法數(shù)有36種(寫出具體數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
137966191925271932812458569683
431257393027556488730113537989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( 。
A.0.40B.0.30C.0.35D.0.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.40+πB.40+2πC.40+3πD.40+4π

查看答案和解析>>

同步練習(xí)冊答案