分析 根據條件,利用待定系數法建立方程進行求解即可.
解答 解:設f(x)=ax+b,(a>0),
則由f(f(x))=16x+9,
得a(ax+b)+b=a2x+ab+b=16x+9,
則$\left\{\begin{array}{l}{{a}^{2}=16}\\{ab+b=9}\end{array}\right.$,得$\left\{\begin{array}{l}{a=4}\\{b=\frac{9}{5}}\end{array}\right.$,即f(x)=4x+$\frac{9}{5}$,
故答案為:4x+$\frac{9}{5}$
點評 本題主要考查函數解析式的求解,根據一次函數的定義,利用待定系數法是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com