【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),曲線的方程為.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線l和曲線的極坐標(biāo)方程;

2)曲線分別交直線和曲線于點,求的最大值及相應(yīng)的的值.

【答案】1.(2時,取得最大值

【解析】

1)利用消參法將直線參數(shù)方程化為普通方程,利用互化公式,將直線和曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;

2)由(1)得直線的極坐標(biāo)方程為,令,得出,,進而得出,利用降冪公式和輔助角公式,化簡得,即可求得的最大值及相應(yīng)的的值.

解:(1)由題可知,直線l的參數(shù)方程為為參數(shù)),

消去參數(shù),得出直線的普通方程為:,

利用互化公式,

則直線的極坐標(biāo)方程為:,

由于曲線的普通方程為:,即:,

的極坐標(biāo)方程為

2)直線的極坐標(biāo)方程為,令,

,即

,

,

即:

,

,即當(dāng)時,取得最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分15分)已知點是圓上任意一點,過點軸的垂線,垂足為,點滿足 記點的軌跡為曲線

)求曲線的方程;

)設(shè),點在曲線上,且直線與直線的斜率之積為,求的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐詩是中國文學(xué)的瑰寶.為了研究計算機上唐詩分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統(tǒng)計了每個類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:

愛情婚姻

詠史懷古

邊塞戰(zhàn)爭

山水田園

交游送別

羈旅思鄉(xiāng)

其他

總計

篇數(shù)

100

64

55

99

91

73

18

500

含“山”字的篇數(shù)

51

48

21

69

48

30

4

271

含“簾”字的篇數(shù)

21

2

0

0

7

3

5

38

含“花”字的篇數(shù)

60

6

14

17

32

28

3

160

1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;

2)已知檢索關(guān)鍵字的選取規(guī)則為:

①若有超過95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;

②若“某字”被選為“某類別”關(guān)鍵字,則由其對應(yīng)列聯(lián)表得到的的觀測值越大,排名就越靠前;

設(shè)“山”“簾”“花”和“愛情婚姻”對應(yīng)的觀測值分別為,,.已知,請完成下面列聯(lián)表,并從上述三個字中選出“愛情婚姻”類別的關(guān)鍵字并排名.

屬于“愛情婚姻”類

不屬于“愛情婚姻”類

總計

含“花”字的篇數(shù)

不含“花”的篇數(shù)

總計

附:,其中.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上點處的切線方程為

求拋物線的方程;

設(shè)為拋物線上的兩個動點,其中,線段的垂直平分線軸交于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個頂點和兩個焦點構(gòu)成的三角形的面積為4

1)求橢圓的方程;

2)已知直線與橢圓交于兩點,試問,是否存在軸上的點,使得對任意的,為定值,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.

甲只能承擔(dān)第四項工作

乙不能承擔(dān)第二項工作

丙可以不承擔(dān)第三項工作

丁可以承擔(dān)第三項工作

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機企業(yè)為確定下一年度投入某種產(chǎn)品的研發(fā)費用,統(tǒng)計了近年投入的年研發(fā)費用千萬元與年銷售量千萬件的數(shù)據(jù),得到散點圖1,對數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計量的值如圖2

1)利用散點圖判斷哪一個更適合作為年研發(fā)費用和年銷售量的回歸類型(不必說明理由),并根據(jù)數(shù)據(jù),求出的回歸方程;

2)已知企業(yè)年利潤千萬元與的關(guān)系式為(其中為自然對數(shù)的底數(shù)),根據(jù)(1)的結(jié)果,要使得該企業(yè)下一年的年利潤最大,預(yù)計下一年應(yīng)投入多少研發(fā)費用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,SA=SB=AB=BC=CA=6,且側(cè)面ASB⊥底面ABC,則三棱錐SABC外接球的表面積為( )

A. 60π B. 56π C. 52π D. 48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為的函數(shù),若同時滿足下列條件:①內(nèi)有單調(diào)性;②存在區(qū)間,使在區(qū)間上的值域也為,則稱上的精彩函數(shù),為函數(shù)的精彩區(qū)間.

1)求精彩區(qū)間符合條件的精彩區(qū)間;

2)判斷函數(shù)是否為精彩函數(shù)?并說明理由.

3)若函數(shù)是精彩函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案