分析 由題意可得A+B-C=A-B+C,或 A+B-C+(A-B+C)=π,求得B=C,或 A=$\frac{π}{2}$,從而得出結(jié)論.
解答 解:三角形ABC中,若sin(A+B-C)=sin(A-B+C),
再結(jié)合A+B-C和A-B+C的范圍是(-π,π),
可得A+B-C=A-B+C,或 A+B-C+(A-B+C)=π,
求得B=C,或 A=$\frac{π}{2}$,
所以這個(gè)三角形的形狀為等腰三角形或直角三角形.
故答案為:等腰三角形或直角三角形.
點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式以及,正弦函數(shù)的定義與應(yīng)用問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的圖象關(guān)于(2,0)中心對(duì)稱 | B. | f(x)的圖象關(guān)于直線x=3對(duì)稱 | ||
C. | f(x)在區(qū)間(2,3)上單調(diào)遞增 | D. | f(2017)=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com