8.已知某四棱錐的三視圖如圖所示,俯視圖是邊長(zhǎng)為4的正方形,正視圖和側(cè)視圖是邊長(zhǎng)為4的等邊三角形,則該四棱錐的全面積為48.

分析 根據(jù)幾何體的三視圖知,該幾何體是正四棱錐,
且底面是邊長(zhǎng)為4的正方形,結(jié)合圖中數(shù)據(jù)求出它的全面積.

解答 解:根據(jù)幾何體的三視圖知,
該幾何體是正四棱錐,且底面是邊長(zhǎng)為4的正方形,
正四棱錐的高即等邊三角形的高為4×sin$\frac{π}{3}$=2$\sqrt{3}$,
∴斜高為$\sqrt{{(2\sqrt{3})}^{2}{+2}^{2}}$=4;
∴該四棱錐的全面積為S=42+4×$\frac{1}{2}$×4×4=48.
故答案為:48.

點(diǎn)評(píng) 本題考查了利用三視圖求幾何體全面積的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知平面向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow b•(\overrightarrow a+\overrightarrow b)=3$,且$|\overrightarrow a|=1,|\overrightarrow b|=2$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x-a-lnx(a∈R).
(1)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:若0<x1<x2,則x1lnx1-x1lnx2>x1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線交x軸于點(diǎn)H,過H作直線l交拋物線于A,B兩點(diǎn),且|BF|=2|AF|.
(Ⅰ)求直線AB的斜率;
(Ⅱ)若△ABF的面積為$\sqrt{2}$,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.16+3πB.12+3πC.8+4$\sqrt{2}$+3πD.4+4$\sqrt{2}$+3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x2-2xsinθ+1≥0;命題q:?α,β∈R,sin(α+β)≤sinα+sinβ,則下列命題中的真命題為( 。
A.(¬p)∧qB.¬(p∧q)C.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)命題p:存在兩個(gè)相交平面垂直于同一條直線;命題q:?x∈R,x2-2x+1≥0.則下 列命題為真命題的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若x∈[a,b],y∈[0,4],則b-a的最小值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1+i}$=( 。
A.2+iB.2-iC.-1+iD.-1-i

查看答案和解析>>

同步練習(xí)冊(cè)答案