18.已知直線l:y=2x+3被橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$截得的弦長為7,則下列直線中被橢圓C截得的弦長一定為7的有(  )
①y=2x-3
②y=2x+1
③y=-2x-3
④y=-2x+3.
A.1條B.2條C.3條D.4條

分析 由于直線l:y=2x+3被橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$截得的弦長為7,根據(jù)對稱性即可判斷出結(jié)論.

解答 解:由于直線l:y=2x+3被橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$截得的弦長為7,
根據(jù)對稱性可得:y=2x-3,y=-2x-3,y=-2x+3.滿足條件.
而直線y=2x+1被橢圓C截得的弦長大于7.
綜上可得:下列直線中被橢圓C截得的弦長一定為7的有①③④.
故選:C.

點評 本題考查了橢圓的標準方程及其對稱性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.“|a|=|b|”是“a=b”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.6本不同的書,按照以下要求處理,各有幾種分法?
(1)甲得一本,乙得二本,丙得三本;
(2)平均分成三堆;
(3)甲、乙、丙每人至少得一本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=x3+($\frac{m}{2}$+2)x2-2x,(x>0),若對于任意的t∈[1,2],函數(shù)f(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),則m的取值范圍是為$(-\frac{37}{3},-9)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖所示,已知P、Q是單位正方體ABCD-A1B1C1D1的面A1B1BA和面ABCD的中心.
①求證:PQ∥平面BCC1B1
②設(shè)M為直線C1D1中點,求異面直線PQ與AM的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.通過隨機調(diào)查某校高三100名學生在高二文理分科是否與性別有關(guān),得到如下的列聯(lián)表:(單位:人)
文理性別總計
選理科402060
選文科103040
總計5050100
(1)從這50名女生中按文理采取分層抽樣,抽取一個容量為5的樣本,問樣本中文科生與理科生各多少人?
(2)從(1)中抽到的5名學生中隨機選取兩名訪談,求選到文科生、理科生各一名的概率;
(3)根據(jù)以上列聯(lián)表,問有多大把握認為“文理分科與性別”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.下列命題中是真命題的所有序號有(3)、(4)、(5)
(1)若$\overrightarrow{a}•\overrightarrow$=$\overrightarrow{a}•\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$;
(2)對空間任意點O與不共線的三點A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),則P,A,B,C四點共面;
(3)“曲線C上的點的坐標都是方程f(x,y)=0的解”是“曲線C的方程是f(x,y)=0”的必要條件;
(4)曲線C的方程是f(x,y)=0,則曲線C關(guān)于y軸對稱的曲線方程是f(-x,y)=0;
(5)($\overrightarrow{c}$•$\overrightarrow$)$\overrightarrow{a}$-($\overrightarrow{a}•\overrightarrow{c}$)$\overrightarrow$與$\overrightarrow{c}$垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.以直角坐標原點為極點,x軸非負半軸為極軸建立極坐標系,已知直線l的極坐標方程為:ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.曲線C的參數(shù)方程為:$\left\{\begin{array}{l}x=1+3cosα\\ y=3sinα\end{array}\right.$(α為參數(shù)).
(1)求直線l的直角坐標方程與曲線C的普通方程;
(2)已知直線l與曲線C相交于A、B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知點M(a,b)在直線x+2y=$\sqrt{5}$上,則$\sqrt{{a^2}+{b^2}}$的最小值為1.

查看答案和解析>>

同步練習冊答案