分析 (1)推導(dǎo)△PAC是以∠PAC為直角的直角三角形,PA⊥△ABC,PA⊥CE,CE⊥PB,再由EF⊥PB,能證明PB⊥平面EFC.
(2)由PB⊥CE,PA⊥平面ABC,知AB⊥CE,過F作FG⊥AB點于G,則∠FEB是二面角B-CE-F的平面角,由此能求出二面角B-CE-F的正切值.
解答 證明:(1)∵PA2+AC2=36+64=100=PC2,
∴△PAC是以∠PAC為直角的直角三角形.…(1分)
∵PA⊥AB,PA⊥AC,AC∩AB=A,
∴PA⊥△ABC.…(3分)∴PA⊥CE,
由題意CE⊥△PAB,則CE⊥PB,
又EF⊥PB,EF∩CE=E,
故PB⊥平面EFC…(5分)
解:(2)由(1)知PB⊥CE,PA⊥平面ABC,
∴AB是PB在平面ABC上的射影,故AB⊥CE.…(6分)
在平面PAB內(nèi),過F作FG⊥AB點于G,
則FG⊥平面ABC,EG是EF在平面ABC上的射影,
∴EF⊥EC.
故∠FEB是二面角B-CE-F的平面角…(8分)
$tan∠FEB=\frac{1}{tan∠PBA}=\frac{AB}{AP}=\frac{10}{6}=\frac{5}{3}$,
即二面角B-CE-F的正切值為$\frac{5}{3}$.…(10分)
點評 本題考查線面垂直的證明,考百二面角的正爭值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥n,m⊥α,則n⊥α | B. | 若m⊥α,m∥n,n∥β,則α⊥β | ||
C. | 若m⊥α,m⊥β,則α∥β | D. | 若m∥α,n∥β,α∥β,則m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\stackrel{∧}{y}$=2x-2.1 | B. | $\stackrel{∧}{y}$=-2x+9.5 | C. | $\stackrel{∧}{y}$=0.3x+2.6 | D. | $\stackrel{∧}{y}$=-0.3x+4.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com