16.上世紀(jì)八十年代初,鄧小平同志曾指出“在人才的問(wèn)題上,要特別強(qiáng)調(diào)一下,必須打破常規(guī)去發(fā)現(xiàn)、選拔和培養(yǎng)杰出的人才”.據(jù)此,經(jīng)省教育廳批準(zhǔn),某中學(xué)領(lǐng)導(dǎo)審時(shí)度勢(shì),果斷作出于1985年開(kāi)始施行超常實(shí)驗(yàn)班教學(xué)試驗(yàn)的決定.一時(shí)間,學(xué)生興奮,教師欣喜,家長(zhǎng)歡呼,社會(huì)熱議.該中學(xué)實(shí)驗(yàn)班一路走來(lái),可謂風(fēng)光無(wú)限,碩果累累,尤其值得一提的是,1990年,全國(guó)共招收150名少年大學(xué)生,該中學(xué)就有19名實(shí)驗(yàn)班學(xué)生被錄取,占全國(guó)的十分之一,轟動(dòng)海內(nèi)外.設(shè)該中學(xué)超常實(shí)驗(yàn)班學(xué)生第x年被錄取少年大學(xué)生的人數(shù)為y.
(1)左下表為該中學(xué)連續(xù)5年實(shí)驗(yàn)班學(xué)生被錄取少年大學(xué)生人數(shù),求y關(guān)于x的線性回歸方程,并估計(jì)第6年該中學(xué)超常實(shí)驗(yàn)班學(xué)生被錄取少年大學(xué)生人數(shù);
年份序號(hào)x12345
錄取人數(shù)y1011141619
附1:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline y$-$\stackrel{∧}$$\overline{x}$
(2)如表是從該校已經(jīng)畢業(yè)的100名高中生錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育得到2×2列聯(lián)表,完成上表,并回答:是否有95%以上的把握認(rèn)為“錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育有關(guān)系”.
附2:
接受超常實(shí)驗(yàn)班教育未接受超常實(shí)驗(yàn)班教育合計(jì)
錄取少年大學(xué)生602080
未錄取少年大學(xué)生101020
合計(jì)7030100
P(k2≥k00.500.400.100.05
k00.4550.7082.7063.841
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

分析 (1)求出回歸系數(shù),即可求出回歸方程;
(2)根據(jù)所給數(shù)據(jù),可得2×2列聯(lián)表,計(jì)算K2,即可得出結(jié)論.

解答 解:(1)由已知中數(shù)據(jù)可得:$\overline x=3,\overline y=14$,∵$\sum_{i=1}^5{{x_i}{y_i}=233,\sum_{i=1}^5{x_i^2}=55}$∴$b=\frac{{\sum_{i=1}^5{{x_i}{y_i}-5\overline x\overline y}}}{{\sum_{i=1}^5{x_i^2-5{{\overline x}^2}}}}=2.3,a=\overline y-b\overline x=14-6.9=7.1$∴y=2.3x+7.1.
當(dāng)x=6時(shí)y=20.9,
即第6年該校實(shí)驗(yàn)班學(xué)生錄取少年大學(xué)生人數(shù)約為21人;…(6分)
(2)該校已經(jīng)畢業(yè)的100名高中生錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育得到2×2列聯(lián)表:

接受超常實(shí)驗(yàn)班教育未接受超常實(shí)驗(yàn)班教育合計(jì)
錄取少年大學(xué)生602080
未錄取少年大學(xué)生101020
合計(jì)7030100
根據(jù)列聯(lián)表中的數(shù)據(jù),得到k2的觀測(cè)值為${k^2}=\frac{{100×{{(60×10-10×20)}^2}}}{70×30×20×80}≈4.762>3.841$
故我們有95%的把握認(rèn)為“錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育有關(guān)系”…(12分)

點(diǎn)評(píng) 本題考查回歸方程,考查獨(dú)立性檢驗(yàn)知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.橢圓兩焦點(diǎn)為F1(-4,0),F(xiàn)2(4,0),P在橢圓上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,△PF1F2的面積為9,則該橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y<0}\\{x-y<0}\\{x+2>0}\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍為(  )
A.(-$\frac{3}{2}$,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$]C.(-$\frac{3}{2}$,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x+1|+|x-3|.
(1)求不等式f(x)<6的解集;
(2)若關(guān)于x的不等式f(x)≥|2a+1|不恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.繼共享單車(chē)之后,又一種新型的出行方式------“共享汽車(chē)”也開(kāi)始亮相北上廣深等十余大中城市,一款叫“一度用車(chē)”的共享汽車(chē)在廣州提供的車(chē)型是“奇瑞eQ”,每次租車(chē)收費(fèi)按行駛里程加用車(chē)時(shí)間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點(diǎn)10公里,每天租用共享汽車(chē)上下班,由于堵車(chē)因素,每次路上開(kāi)車(chē)花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開(kāi)車(chē)花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:
時(shí)間(分鐘)[15,25)[25,35)[35,45)[45,55)[55,65]
次數(shù)814882
以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開(kāi)車(chē)花費(fèi)的時(shí)間視為用車(chē)時(shí)間,范圍為[15,65]分鐘.
(Ⅰ)若李先生上、下班時(shí)租用一次共享汽車(chē)路上開(kāi)車(chē)不超過(guò)45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)ξ是4次使用共享汽車(chē)中最優(yōu)選擇的次數(shù),求ξ的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽車(chē)2次,一個(gè)月(以20天計(jì)算)平均用車(chē)費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)max{m,n}表示m,n中最大值,則關(guān)于函數(shù)f(x)=max{sinx+cosx,sinx-cosx}的命題中,真命題的個(gè)數(shù)是(  )
①函數(shù)f(x)的周期T=2π
②函數(shù)f(x)的值域?yàn)?[-1,\sqrt{2}]$
③函數(shù)f(x)是偶函數(shù) 
④函數(shù)f(x)圖象與直線x=2y有3個(gè)交點(diǎn).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系中,曲線${C_1}:\left\{\begin{array}{l}x=2+2cosα\\ y=sinα\end{array}\right.$(α為參數(shù))經(jīng)伸縮變換$\left\{\begin{array}{l}{x^'}=\frac{x}{2}\\{y^'}=y\end{array}\right.$后的曲線為C2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C2的極坐標(biāo)方程;
(2)A,B是曲線C2上兩點(diǎn),且$∠AOB=\frac{π}{3}$,求|OA|+|OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=lnx-$\frac{2}{x-1}$的零點(diǎn)所在的大致區(qū)間是( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|+|x+1|,P為不等式f(x)>4的解集.
(Ⅰ)求P;
(Ⅱ)證明:當(dāng)m,n∈P時(shí),|mn+4|>2|m+n|.

查看答案和解析>>

同步練習(xí)冊(cè)答案