11.繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費(fèi)按行駛里程加用車時(shí)間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點(diǎn)10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開車花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:
時(shí)間(分鐘)[15,25)[25,35)[35,45)[45,55)[55,65]
次數(shù)814882
以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為[15,65]分鐘.
(Ⅰ)若李先生上、下班時(shí)租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)ξ是4次使用共享汽車中最優(yōu)選擇的次數(shù),求ξ的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽車2次,一個(gè)月(以20天計(jì)算)平均用車費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).

分析 (Ⅰ)依題意ξ的值可能為0,1,2,3,4,且ξ~B(4,$\frac{3}{4}$),由此能求出ξ的分布列和數(shù)學(xué)期望.
(Ⅱ)先求出每次用車路上平均花的時(shí)間,從而求出每次租車的費(fèi)用,由此能求出一個(gè)月的平均用車費(fèi)用.

解答 解:(Ⅰ)李先生一次租用共享汽車,為最優(yōu)選擇的概率$p=\frac{30}{40}=\frac{3}{4}$
依題意ξ的值可能為0,1,2,3,4,且ξ~B(4,$\frac{3}{4}$),…(2分)
$P(ξ=0)=(_4^0{(\frac{3}{4})^0}{(\frac{1}{4})^4}=\frac{1}{256}$,
$P(ξ=1)=(_4^1(\frac{3}{4}){(\frac{1}{4})^3}=\frac{12}{256}$,
$P(ξ=2)=(_4^2{(\frac{3}{4})^2}{(\frac{1}{4})^2}=\frac{54}{256}$,
$P(ξ=3)=(_4^3{(\frac{3}{4})^3}{(\frac{1}{4})^1}=\frac{108}{256}$,
$P(ξ=4)=(_4^4{(\frac{3}{4})^4}{(\frac{1}{4})^0}=\frac{81}{256}$,
∴ξ的分布列為:

ξ01234
P$\frac{1}{256}$$\frac{12}{256}$$\frac{54}{256}$$\frac{108}{256}$$\frac{81}{256}$
…(6分)
$Eξ=1×\frac{12}{256}+2×\frac{54}{256}+3×\frac{108}{256}+4×\frac{81}{256}=3$(或$Eξ=4×\frac{3}{4}=3$).…(8分)
(Ⅱ)每次用車路上平均花的時(shí)間$t=20×\frac{8}{40}+30×\frac{14}{40}+40×\frac{8}{40}+50×\frac{8}{40}+60×\frac{2}{40}=35.5$(分鐘)…10 分
每次租車的費(fèi)用約為10+35.5×0.1=13.55元.
一個(gè)月的平均用車費(fèi)用約為542元.…(12分)

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法及應(yīng)用,考查二項(xiàng)公布的性質(zhì),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,邊長為2的正方形ABFC和高為2的直角梯形ADEF所在的平面互相垂直,AF∩BC=O,DE=$\sqrt{2}$,ED∥AF且∠DAF=90°
(1)求證:DE⊥平面BCE
(2)過O作OH⊥平面BEF,垂足為H,求二面角H-AE-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且?x∈(0,+∞),f[f(x)-lnx]=e+1,設(shè)a=f(($\frac{1}{2}$)${\;}^{\frac{1}{3}}$),b=f(($\frac{1}{3}$)${\;}^{\frac{1}{2}}$),c=f(log2π),則a,b,c的大小關(guān)系是c>a>b(用“>”號(hào)連接表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某學(xué)校的特長班有50名學(xué)生,其中有體育生20人,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75),按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為a:4:10.
(1)求a的值,并求這50名學(xué)生心率的平均數(shù);
(2)因?yàn)閷W(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機(jī)抽取一名,該學(xué)生是體育生的概率為0.8,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)?請(qǐng)說明理由.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
心率小于60次/分心率不小于60次/分合計(jì)
體育生81220
藝術(shù)生22830
合計(jì)104050

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在斜三棱柱ABC-A1B1C1中,AB=AC,平面BB1C1C⊥底面ABC,點(diǎn)M、D分別是線段AA1、BC的中點(diǎn).
(1)求證:AD⊥CC1;
(2)求證:AD∥平面MBC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.上世紀(jì)八十年代初,鄧小平同志曾指出“在人才的問題上,要特別強(qiáng)調(diào)一下,必須打破常規(guī)去發(fā)現(xiàn)、選拔和培養(yǎng)杰出的人才”.據(jù)此,經(jīng)省教育廳批準(zhǔn),某中學(xué)領(lǐng)導(dǎo)審時(shí)度勢,果斷作出于1985年開始施行超常實(shí)驗(yàn)班教學(xué)試驗(yàn)的決定.一時(shí)間,學(xué)生興奮,教師欣喜,家長歡呼,社會(huì)熱議.該中學(xué)實(shí)驗(yàn)班一路走來,可謂風(fēng)光無限,碩果累累,尤其值得一提的是,1990年,全國共招收150名少年大學(xué)生,該中學(xué)就有19名實(shí)驗(yàn)班學(xué)生被錄取,占全國的十分之一,轟動(dòng)海內(nèi)外.設(shè)該中學(xué)超常實(shí)驗(yàn)班學(xué)生第x年被錄取少年大學(xué)生的人數(shù)為y.
(1)左下表為該中學(xué)連續(xù)5年實(shí)驗(yàn)班學(xué)生被錄取少年大學(xué)生人數(shù),求y關(guān)于x的線性回歸方程,并估計(jì)第6年該中學(xué)超常實(shí)驗(yàn)班學(xué)生被錄取少年大學(xué)生人數(shù);
年份序號(hào)x12345
錄取人數(shù)y1011141619
附1:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline y$-$\stackrel{∧}$$\overline{x}$
(2)如表是從該校已經(jīng)畢業(yè)的100名高中生錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育得到2×2列聯(lián)表,完成上表,并回答:是否有95%以上的把握認(rèn)為“錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育有關(guān)系”.
附2:
接受超常實(shí)驗(yàn)班教育未接受超常實(shí)驗(yàn)班教育合計(jì)
錄取少年大學(xué)生602080
未錄取少年大學(xué)生101020
合計(jì)7030100
P(k2≥k00.500.400.100.05
k00.4550.7082.7063.841
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如表示意某科技公司2012~2016年年利潤y(單位:十萬元)與年份代號(hào)x之間的關(guān)系,如果該公司盈利變化規(guī)律保持不變,則第n年(以2012年為第1年)年利潤的預(yù)報(bào)值是y=2n2-n.(直接寫出代數(shù)式即可,不必附加單位)
年份20122013201420152016
年份代號(hào)x12345
年利潤/十萬元16152845

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=sin({ωx+\frac{π}{6}})({0<ω<2})$滿足條件:$f({-\frac{1}{2}})=0$,為了得到y(tǒng)=f(x)的圖象,可將函數(shù)g(x)=cosωx的圖象向右平移m個(gè)單位(m>0),則m的最小值為( 。
A.1B.$\frac{1}{2}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=(2n-1)an,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案