5.表面積為24的正方體的頂點都在同一球面上,則該球的體積為( 。
A.12πB.$4\sqrt{3}π$C.$\frac{8}{3}$πD.$\frac{4\sqrt{3}}{3}$π

分析 由正方體的表面積為24,得到正方體的棱長,求出正方體的體對角線的長,就是球的直徑,求出球的體積即可.

解答 解:表面積為24的正方體的棱長為:2,正方體的體對角線的長為:2$\sqrt{3}$,就是球的直徑,
∴球的體積為:S=$\frac{4}{3}$π($\sqrt{3}$)3=4$\sqrt{3}$π.
故選:C.

點評 考查球的體積表面積,正方體的外接球的知識,仔細分析,找出二者之間的關系:正方體的對角線就是球的直徑,是解題關鍵,本題考查轉(zhuǎn)化思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≥-3}\\{2x+y≤3}\\{y≥1}\end{array}\right.$,則z=x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若將函數(shù)f(x)=$|sin(ωx-\frac{π}{8})|(ω>0)$的圖象向左平移$\frac{π}{12}$個單位后,所得圖象對應的函數(shù)為偶函數(shù),則ω的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設P,Q分別為直線$\left\{\begin{array}{l}x=t\\ y=6-2t\end{array}\right.$(t為參數(shù))和曲線C:$\left\{\begin{array}{l}x=1+\sqrt{5}cosθ\\ y=-2+\sqrt{5}sinθ\end{array}\right.$(θ為參數(shù))的點,則|PQ|的最小值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為70萬元,同時將受到環(huán)保部門的處罰,第一個月罰3萬元,以后每月增加2萬元.如果從今年一月起投資500萬元添加回收凈化設備(改造設備時間不計),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本.據(jù)測算,添加回收凈化設備并投產(chǎn)后的前5個月中的累計生產(chǎn)凈收入g(n)是生產(chǎn)時間n個月的二次函數(shù)g(n)=n2+kn(k是常數(shù)),且前3個月的累計生產(chǎn)凈收入可達309萬,從第6個月開始,每個月的生產(chǎn)凈收入都與第5個月相同.同時,該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎勵100萬元.
(1)求前8個月的累計生產(chǎn)凈收入g(8)的值;
(2)問經(jīng)過多少個月,投資開始見效,即投資改造后的純收入多于不改造時的純收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.學校擬安排六位老師至5 月1日至5月3日值班,要求每人值班一天,每天安排兩人,若六位老師中王老師不能值5月2日,李老師不能值5月3日的班,則滿足此要求的概率為$\frac{7}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=|2x-1|+|x+a|.
(Ⅰ)當a=1時,求y=f(x)圖象與直線y=3圍成區(qū)域的面積;
(Ⅱ)若f(x)的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知圓C:(x-a)2+(y-b)2=2,圓心C在曲線y=$\frac{1}{x}$(x∈[1,2])上.則ab=1,直線l:x+2y=0被圓C所截得的長度的取值范圍是[$\frac{2\sqrt{5}}{5}$,$\frac{2\sqrt{10}}{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.《周髀算經(jīng)》是中國古代的天文學和數(shù)學著作.其中一個問題大意為:一年有二十四個節(jié)氣,每個節(jié)氣晷長損益相同(即太陽照射物體影子的長度增加和減少大小相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:一丈等于十尺,一尺等于十寸),則夏至之后的那個節(jié)氣(小暑)晷長為( 。
A.五寸B.二尺五寸C.三尺五寸D.一丈二尺五寸

查看答案和解析>>

同步練習冊答案