3.如圖的程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“aMODb”表示a除以b的余數(shù)),若輸入的a,b分別為485,270,則輸出的b=(  )
A.0B.10C.5D.55

分析 由循環(huán)結(jié)構(gòu)的特點,先判斷,再執(zhí)行,可得答案.

解答 解:輾轉(zhuǎn)相除法是求兩個正整數(shù)之最大公約數(shù)的算法,
由輾轉(zhuǎn)相除法得485與270的最大公約數(shù)為5.
故選:C.

點評 本題考查算法和程序框圖,主要考查循環(huán)結(jié)構(gòu)的理解和運用,以及賦值語句的運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$ax2-2x+2lnx(a≥0),g(x)=x2+b,(b>0).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)a=0時,若對任意x1,x2∈[$\frac{1}{e}$,e],使|g(x2)-f(x1)|<e2+4e成立,其中e=2.71828…,是自然對數(shù)的底數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓O的半徑為定長r,點A是平面內(nèi)一定點(不與O重合),P是圓O上任意一點,線段AP的垂直平分線l和直線OP相交于點Q,當(dāng)點P在圓上運動時,點Q的軌跡可能是下列幾種:①橢圓,②雙曲線,③拋物線,④直線,⑤點(  )
A.①②⑤B.①②③C.①④⑤D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=a(lnx-2x2)-3x,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)a=-1時,函數(shù)g(x)=tx2-4x+1滿足對任意的x1∈(0,e],都存在x2∈[0,1],使得f(x1)≥g(x2)成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且(an+2-an+1)-(an+1-an)=2,若[x]表示不超過x的最大整數(shù),則[$\frac{2017}{{a}_{1}}$+$\frac{2017}{{a}_{2}}$+…+$\frac{2017}{{a}_{2017}}$]=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{bn}滿足$\frac{b_1}{2}+\frac{b_2}{2^2}+\frac{b_n}{2^3}+…+\frac{b_n}{2^n}=n({n∈{N^*}})$,${b_n}={2^{{a_n}-1}}$,則數(shù)列$\left\{{\frac{a_n}{b_n}}\right\}$的前7項和S7=$\frac{187}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a、b、c三個實數(shù)成等差數(shù)列,則直線bx+ay+c=0與拋物線${y^2}=-\frac{1}{2}x$的相交弦中點的軌跡方程是x+1=-(2y-1)2(y≠1)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若二項式${({{x^2}-\frac{2}{x}})^n}$展開式的二項式系數(shù)之和為8,則該展開式的系數(shù)之和為( 。
A.-1B.1C.27D.-27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,直線l為4x-5y+40=0;直線l1為4x-5y+5=0,直線l2為4x-5y+m=0,l1與橢圓相交于A、B兩點,求|AB|

查看答案和解析>>

同步練習(xí)冊答案