在△ABC中,已知BC=1,B=
π
3
,△ABC的面積為
3
,則AC的長為
 
考點(diǎn):正弦定理
專題:解三角形
分析:有三角形的面積公式先求|AB|,再由余弦定理求AC的長.
解答: 解:因?yàn)镾△ABC=
1
2
×|AB|×|BC|sin
π
3
=
1
2
×|AB|×1×
3
2
=
3

∴|AB|=4,
由余弦定理得:|AC|=
AB2+BC2-2AB×BC
=
16+1-2×4×1×
1
2
=
13

故答案為:
13
點(diǎn)評(píng):本題主要考查余弦定理和三角形的面積公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上一點(diǎn)M(m,-3)到拋物線焦點(diǎn)的距離為5,
(1)求m的值;
(2)拋物線的方程及準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,l),B(3,2),若線段AB(不含端點(diǎn)A、B)與橢圓(m-1)x2+my2=1總有交點(diǎn),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連續(xù)函數(shù)y=f(x)在點(diǎn)x0取極值是f′(x0)=0的(  )
A、充分條件B、必要條件
C、充要條件D、必要非充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司從一批產(chǎn)品中隨機(jī)抽出60件進(jìn)行檢測(cè).如圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106].
(1)求圖中x的值,并根據(jù)頻率分布直方圖估計(jì)這60件抽樣產(chǎn)品凈重的平均數(shù)、眾數(shù)和中位數(shù);
(2)若將頻率視為概率,從這批產(chǎn)品中有放回地隨機(jī)抽取3件,求至多有2件產(chǎn)品的凈重在[96,98)的概率;
(3)若產(chǎn)品凈重在[98,104)為合格產(chǎn)品,其余為不合格產(chǎn)品.從這60件抽樣產(chǎn)品中任選2件,記ξ表示選到不合格產(chǎn)品的件數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市舉行運(yùn)動(dòng)會(huì),為了搞好接待工作,組委會(huì)招募了10名男志愿者和10名女志愿者,將這20名志愿者的身高編成如圖的莖葉圖(單位:cm),定義:身高在175cm以上(包含175cm)的志愿者為“高個(gè)子”,否則定義為“非高個(gè)子”.

(Ⅰ)若將這些志愿者的身高按照[166,171),[171,176),[176,181),[181,186),[186,191]分成5組,請(qǐng)先作出這些志愿者身高的頻率分布表,再作出它的頻率分布直方圖;
(Ⅱ)若從所有的“高個(gè)子”中任選3名志愿者,求男、女高個(gè)子都有的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的個(gè)數(shù)是( 。 
①數(shù)據(jù)5,4,3,4,5的眾數(shù)是5
②數(shù)據(jù)5,4,3,4,5的中位數(shù)是3
③一組數(shù)據(jù)的方差是4,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差是±2
④頻率分布直方圖中,各小長方形的面積等于相應(yīng)各組的頻數(shù).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓x2+ny2=1與直線y=1-x交于M,N兩點(diǎn),過原點(diǎn)與線段MN中點(diǎn)所在直線的斜率為
2
2
,則n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足S4=S9且a1=-12.
(1)求通項(xiàng)公式an,前n項(xiàng)和公式Sn
(2)求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案