19.已知函數(shù)f(x)=Asin(wx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,將函數(shù)的圖象向左平移$\frac{π}{6}$個單位長度得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式為(  )
A.g(x)=2sin(2x-$\frac{π}{3}$)B.g(x)=2sin(2x+$\frac{π}{6}$)C.g(x)=-2sin(2x-$\frac{π}{3}$)D.g(x)=-2sin(2x+$\frac{π}{6}$)

分析 由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)f(x)的解析式,再利用y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式.

解答 解:由函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的圖象,
可得A=1,$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,即$\frac{2π}{ω}$=π求得ω=2,
∵f($\frac{7π}{12}$)=2sin(2×$\frac{7π}{12}$+φ)=-2,
即sin($\frac{π}{6}$+φ)=1,
∴$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{3}$+2kπ,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$).
將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位長度得到函數(shù)g(x)=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]
=2sin(2x+π-$\frac{π}{3}$)=-2sin(2x-$\frac{π}{3}$)的圖象,
故選:C.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,還考查了y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)z=-1+3i,則z的共軛復(fù)數(shù)為( 。
A.-1+3iB.-1-3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.是否存在a,b,c使等式($\frac{1}{n}$)2+($\frac{2}{n}$)2+($\frac{3}{n}$)2+…+($\frac{n}{n}$)2=$\frac{a{n}^{2}+bn+c}{n}$對一切n∈N*都成立若不存在,說明理由;若存在,用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)?shù)列{an}滿足${a_{n+1}}=\left\{{\begin{array}{l}{2{a_n}}\\{{a_n}-1}\end{array}}\right.\begin{array}{l}{(0≤{a_n}≤1)}\\{({a_n}>1)}\end{array}$,且${a_1}=\frac{6}{7}$,則a2017=$\frac{12}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2,$BD=2\sqrt{3}$,AC與BD中心O點,將△ACD沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為60°.
(1)求證:平面PAC⊥平面PDB;
(2)求已知二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,A是橢圓C的左頂點,且滿足|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若M,N是橢圓C上異于A點的兩個動點,且滿足AM⊥AN,問直線MN是否恒過定點?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把函數(shù)y=sinx(x∈R)的圖象上所有點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再把所得圖象上所有向左平行移動$\frac{π}{3}$個單位長度,得到的圖象所表示的函數(shù)是(  )
A.$y=sin(2x-\frac{π}{3}),x∈R$B.$y=sin(\frac{x}{2}+\frac{π}{6}),x∈R$C.$y=sin(2x+\frac{π}{3}),x∈R$D.$y=sin(2x+\frac{2π}{3}),x∈R$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=|x-4|+|x-6|的最小值為( 。
A.2B.$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,則f(f(2))的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案