A. | g(x)=2sin(2x-$\frac{π}{3}$) | B. | g(x)=2sin(2x+$\frac{π}{6}$) | C. | g(x)=-2sin(2x-$\frac{π}{3}$) | D. | g(x)=-2sin(2x+$\frac{π}{6}$) |
分析 由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)f(x)的解析式,再利用y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式.
解答 解:由函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的圖象,
可得A=1,$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,即$\frac{2π}{ω}$=π求得ω=2,
∵f($\frac{7π}{12}$)=2sin(2×$\frac{7π}{12}$+φ)=-2,
即sin($\frac{π}{6}$+φ)=1,
∴$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{3}$+2kπ,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$).
將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位長度得到函數(shù)g(x)=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]
=2sin(2x+π-$\frac{π}{3}$)=-2sin(2x-$\frac{π}{3}$)的圖象,
故選:C.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,還考查了y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+3i | B. | -1-3i | C. | 1+3i | D. | 1-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(2x-\frac{π}{3}),x∈R$ | B. | $y=sin(\frac{x}{2}+\frac{π}{6}),x∈R$ | C. | $y=sin(2x+\frac{π}{3}),x∈R$ | D. | $y=sin(2x+\frac{2π}{3}),x∈R$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com