分析 (1)易知O為BD的中點,則AC⊥BD,即AC⊥平面PBD,即平面PAC⊥平面PDB.
(2)過P作DB的垂線,垂足為H,則PH垂直平面ABCD,∠PHO=60°,
以O(shè)B為x后,OC為y軸,過O垂直于平面ABC向上的直線為z軸建立如圖所示空間直角坐標系,利用向量法求解.
解答 解:(1)證明:∵△BCD為正三角形,AD=AB=2,易知O為BD的中點,則AC⊥BD,
又PO?平面PBD,所以AC⊥平面PBD,∵AC?平面PAC,∴平面PAC⊥平面PDB.
(2)過P作DB的垂線,垂足為H,則PH垂直平面ABCD,∠PHO=60°,
以O(shè)B為x后,OC為y軸,過O垂直于平面ABC向上的直線為z軸建立如圖所示空間直角坐標系,
則A(0,-1,0),$B(\sqrt{3},0,0)$,$P(-\frac{{\sqrt{3}}}{2},0,\frac{3}{2})$,
易知平面PBD的法向量為$\overrightarrow n=(0,1,0)$,$\overrightarrow{AB}=(\sqrt{3},1,0)$,$\overrightarrow{AP}=(-\frac{{\sqrt{3}}}{2},1,\frac{3}{2})$,
設(shè)平面ABP的法向量為$\overrightarrow n=(x,y,z)$,
則由$\left\{{\begin{array}{l}{\overrightarrow n⊥\overrightarrow{AB}}\\{\overrightarrow n⊥\overrightarrow{AP}}\end{array}}\right.$得$\left\{{\begin{array}{l}{\overrightarrow n×\overrightarrow{AB}=\sqrt{3}x+y=0}\\{\overrightarrow n×\overrightarrow{AP}=-\frac{{\sqrt{3}}}{2}x+y+\frac{3}{2}z=0}\end{array}}\right.$,
取$\overrightarrow n=(1,-\sqrt{3},\sqrt{3})$,$cos<\overrightarrow m,\overrightarrow n>=\frac{{\sqrt{3}}}{{\sqrt{7}}}=\frac{{\sqrt{21}}}{7}$,
二面角A-PB-D的余弦值為$\frac{{\sqrt{21}}}{7}$.
點評 本題考查了空間面面垂直的判定,向量法求空間角,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{31}{15}$ | B. | $-\frac{7}{5}$ | C. | $-\frac{31}{17}$ | D. | $-\frac{9}{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 55π | B. | 75π | C. | 77π | D. | 65π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $a=\sqrt{3}$ | B. | $a>\sqrt{3}$或$a<-\sqrt{3}$ | C. | $-\sqrt{3}<a<\sqrt{3}$ | D. | $-\sqrt{3}≤a≤\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | g(x)=2sin(2x-$\frac{π}{3}$) | B. | g(x)=2sin(2x+$\frac{π}{6}$) | C. | g(x)=-2sin(2x-$\frac{π}{3}$) | D. | g(x)=-2sin(2x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 濟南 | B. | 青島 | C. | 濟南和濰坊 | D. | 濟南和青島 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3795000立方尺 | B. | 2024000立方尺 | C. | 632500立方尺 | D. | 1897500立方尺 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com