【題目】一走廊拐角處的橫截面如圖所示,已知內(nèi)壁和外壁都是半徑為1m的四分之一圓弧,分別與圓弧相切于兩點(diǎn),且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒的兩個(gè)端點(diǎn)分別在外壁和上,且木棒與內(nèi)壁圓弧相切于點(diǎn)設(shè)試用表示木棒的長(zhǎng)度
(2)若一根水平放置的木棒能通過(guò)該走廊拐角處,求木棒長(zhǎng)度的最大值.
【答案】(1);(2).
【解析】
試題(1)如圖,設(shè)圓弧FG所在的圓的圓心為Q,過(guò)Q點(diǎn)作CD垂線,垂足為點(diǎn)T,且交MN或其延長(zhǎng)線與于S,并連接PQ,再過(guò)N點(diǎn)作TQ的垂線,垂足為W.在中用NW和表示出NS,在中用PQ和表示出QS,然后分別看S在線段TG上和在線段GT的延長(zhǎng)線上分別表示出TS=QT-QS,然后在中表示出MS,利用MN=NS+MS求得MN的表達(dá)式和的表達(dá)式.
(2)設(shè)出,則可用t表示出,然后可得關(guān)于t的表達(dá)式,對(duì)函數(shù)進(jìn)行求導(dǎo),根據(jù)t的范圍判斷出導(dǎo)函數(shù)與0的大小,進(jìn)而就可推斷出函數(shù)的單調(diào)性;然后根據(jù)t的范圍求得函數(shù)的最小值.
試題解析:⑴如圖,設(shè)圓弧FG所在的圓的圓心為Q,過(guò)Q點(diǎn)作CD的垂線,垂足為點(diǎn)T,且交MN或其延長(zhǎng)線于S,并連結(jié)PQ,再過(guò)點(diǎn)N作TQ的垂線,垂足為W,在中,因?yàn)?/span>NW=2,,所以,因?yàn)?/span>MN與圓弧FG切于點(diǎn)P,所以,在中,因?yàn)?/span>PQ=1,,所以,
①若M在線段TD上,即S在線段TG上,則TS=QT-QS,
在中,,
因此.
②若M在線段CT上,即若S在線段GT的延長(zhǎng)線上,則TS=QS-QT,
在中,,
因此.
.
(2)設(shè),則,
因此.因?yàn)?/span>,又,所以恒成立,
因此函數(shù)在是減函數(shù),所以
即.
所以一根水平放置的木棒若能通過(guò)該走廊拐角處,則其長(zhǎng)度的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三邊長(zhǎng)分別為a、b、c,且滿足.
(1)是否存在邊長(zhǎng)均為整數(shù)的△ABC?若存在,求出三邊長(zhǎng);若不存在,說(shuō)明理由.
(2)若,,,求出△ABC周長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ω>0,0<φ<π,直線和是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱軸,若將函數(shù)f(x)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,則得到的圖象的函數(shù)解析式是( )
A.B.
C.y=2cos2xD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解本市的交通狀況,某校高一年級(jí)的同學(xué)分成了甲、乙、丙三個(gè)組,從下午13點(diǎn)到18點(diǎn),分別對(duì)三個(gè)路口的機(jī)動(dòng)車通行情況進(jìn)行了實(shí)際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個(gè)組所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,則它們的大小關(guān)系為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2006 年 8 月中旬 , 湖南省資興市遇到了百年不遇的洪水災(zāi)害 . 在資興市的東江湖岸邊的點(diǎn) O 處(可視湖岸為直線) 停放著一只救人的小船,由于纜繩突然斷開(kāi),小船被風(fēng)刮跑,其方向與湖岸成 15°,, 速度為2.5 km/ h ,同時(shí),岸上有一人從同一地點(diǎn)開(kāi)始追趕小船 .已知他在岸上追的速度為4 km/ h ,在水中游的速度為 2 km/h .問(wèn)此人能否追上小船? 若小船速度改變 ,則小船能被此人追上的最大速度是多少 ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的外心為O,E是AC的中點(diǎn),直線OE交AB于點(diǎn)D,M、N分別是的外心、內(nèi)心.若AB=2BC,證明:為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時(shí),AB與b成30°角;
②當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫(xiě)所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點(diǎn)處的切線方程;
(3)若不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com