分析 建立坐標系,求出平面AB1D的法向量$\overrightarrow{n}$和$\overrightarrow{BM}$的坐標,計算出$\overrightarrow{n}$和$\overrightarrow{BM}$的夾角即可得出結論.
解答 解:以BC,BA,BB1為坐標軸建立如圖所示的坐標系.
則A(0,2,0),B(0,0,0),C(2,0,0),A1(0,2,1),B1(0,0,1),C1(2,0,1),D(1,1,1),
∴$\overrightarrow{AD}$=(1,-1,1),$\overrightarrow{A{B}_{1}}$=(0,-2,1),$\overrightarrow{B{B}_{1}}$=(0,0,1),$\overrightarrow{{B}_{1}C}$=(2,0,-1),
∴$\overrightarrow{{B}_{1}M}$=$\frac{1}{3}\overrightarrow{{B}_{1}C}$=($\frac{2}{3}$,0,-$\frac{1}{3}$),∴$\overrightarrow{BM}$=$\overrightarrow{B{B}_{1}}$+$\overrightarrow{{B}_{1}M}$=($\frac{2}{3}$,0,$\frac{2}{3}$).
設面AB1D的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=0}\\{\overrightarrow{n}•\overrightarrow{AD}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-2y+z=0}\\{x-y+z=0}\end{array}\right.$,令z=2得$\overrightarrow{n}$=(-1,1,2),
∴cos<$\overrightarrow{n}$,$\overrightarrow{BM}$>=$\frac{\overrightarrow{n}•\overrightarrow{BM}}{|\overrightarrow{n}||\overrightarrow{BM}|}$=$\frac{\frac{2}{3}}{\sqrt{6}•\frac{2\sqrt{2}}{3}}$=$\frac{\sqrt{3}}{6}$.
直線BM與面AB1D所成角的正弦值為$\frac{\sqrt{3}}{6}$.
點評 本題考查了空間向量在立體幾何中的應用,線面角的計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-4x-1 | B. | y=4x-1 | C. | y=4x-11 | D. | y=-4x+7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若l∥m,l∥n,則m∥n | B. | 若l⊥α,n∥α,則l⊥n | C. | 若l⊥m,m∥n,則l⊥n | D. | 若l∥α,n∥α,則l∥n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com