6.已知直線l,m,n及平面α,下列命題中錯(cuò)誤的是( 。
A.若l∥m,l∥n,則m∥nB.若l⊥α,n∥α,則l⊥nC.若l⊥m,m∥n,則l⊥nD.若l∥α,n∥α,則l∥n

分析 在A中,由平行公理得m∥n;在B中,由線面垂直、線面平行的性質(zhì)定理得l⊥n;在C中,平行線的性質(zhì)定理得l⊥n;在D中,l與n相交、平行或異面.

解答 解:由直線l,m,n及平面α,知:
在A中,若l∥m,l∥n,則由平行公理得m∥n,故A正確;
在B中,若l⊥α,n∥α,則由線面垂直、線面平行的性質(zhì)定理得l⊥n,故B正確;
在C中,若l⊥m,m∥n,則平行線的性質(zhì)定理得l⊥n,故C正確;
在D中,若l∥α,n∥α,則l與n相交、平行或異面,故D錯(cuò)誤.
故選:D.

點(diǎn)評(píng) 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在圓內(nèi)接△ABC,A,B,C所對(duì)的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大。
(2)若點(diǎn)D是劣弧$\widehat{AC}$上一點(diǎn),AB=3,BC=2,AD=1,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{4}{{({{a_n}+1})({{a_n}+5})}}$,數(shù)列{bn}前n項(xiàng)和為Tn,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在底面為等腰直角三角形的直三棱柱ABC-A1B1C1中,AB⊥BC,AB=2,AA1=1,D為A1C1的中點(diǎn),線段B1C上的點(diǎn)M滿足$\overrightarrow{{B}_{1}M}$=$\frac{1}{3}$$\overrightarrow{{B}_{1}C}$,求直線BM與面AB1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線x-$\sqrt{3}$y+1=0的斜率為(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)全集U=R,A={x|$\frac{1}{4}$≤2x<8},B={x|y=$\sqrt{2-x}$}.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x2-2(a+3)+a(a+6)<0},∁UA∪C=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=ax3+2x2+1,若f'(-1)=5,則a的值等于( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{5}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.(x2-x-2)3展開式中x項(xiàng)的系數(shù)為-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.等差數(shù)列{an}中,a1=-5,a3是4與49的等比中項(xiàng),且a3<0,則a5等于(  )
A.-18B.-23C.-24D.-32

查看答案和解析>>

同步練習(xí)冊(cè)答案