3.已知(x+2)7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7
(1)求a5;
(2)求(x+2)7展開(kāi)式中系數(shù)最大的項(xiàng).

分析 (1)根據(jù)(x+2)7=[3+(x-1)]7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,利用通項(xiàng)公式求得a5 的值.
(2)設(shè)第r+1項(xiàng)的系數(shù)最大,由$\left\{\begin{array}{l}{{C}_{7}^{r}{{•3}^{7-r}≥C}_{7}^{r-1}{•3}^{8-r}}\\{{C}_{7}^{r}{{•3}^{7-r}≥C}_{7}^{r+1}{•3}^{6-r}}\end{array}\right.$,求得r的范圍,再利用通項(xiàng)公式求得展開(kāi)式中系數(shù)最大的項(xiàng).

解答 解:(1)∵已知(x+2)7=[3+(x-1)]7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7
∴a5 =${C}_{7}^{5}$•32=189.
(2)設(shè)第r+1項(xiàng)的系數(shù)最大,由$\left\{\begin{array}{l}{{C}_{7}^{r}{{•3}^{7-r}≥C}_{7}^{r-1}{•3}^{8-r}}\\{{C}_{7}^{r}{{•3}^{7-r}≥C}_{7}^{r+1}{•3}^{6-r}}\end{array}\right.$,即$\left\{\begin{array}{l}{r≤2}\\{r≥1}\end{array}\right.$,
可得(x+2)7展開(kāi)式中系數(shù)最大的項(xiàng)為T(mén)2=${C}_{7}^{1}$•36 (x-1),T3=${C}_{7}^{2}$•35(x-1)2

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.甲、乙兩人射擊,甲射擊一次中靶的概率是p1,乙射擊一次中靶的概率是p2,且$\frac{1}{{p}_{1}}$,$\frac{1}{{p}_{2}}$是方程x2-5x+6=0的兩個(gè)實(shí)根,已知甲射擊5次,中靶次數(shù)的方差是$\frac{5}{4}$.
(1)求p1,p2的值;
(2)若兩人各射擊2次,至少中靶3次就算完成目的,則完成目的概率是多少?
(3)若兩人各射擊1次,至少中靶1次就算完成目的,則完成目的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知首項(xiàng)都是1的兩個(gè)數(shù)列{an},{bn}(bn≠0.n∈N*)滿(mǎn)足anbn+1-an+1bn+2bn+1bn=0.令cn=$\frac{{a}_{n}}{_{n}}$,求證數(shù)列{cn}是等差數(shù)列,并求{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=x+$\frac{cosx}{x}$的圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知正項(xiàng)數(shù)列{an},{bn},{cn}滿(mǎn)足bn=a2n-1,cn=a2n,n∈N*,數(shù)列{bn}的前n項(xiàng)和為Sn,(bn+1)2=4Sn,數(shù)列{cn}的前n項(xiàng)和Tn=3n-1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.根據(jù)a的不同取值,求f(x)=$\frac{1}{{x}^{2}+ax+1}$(a∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.判斷下列數(shù)列哪一個(gè)是等差數(shù)列(  )
A.1,3,6,10,15,21…B.1,2,4,8,16,32,…
C.1,$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{12}$,$\frac{1}{20}$,…D.-3,0,3,6,9,12…

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知a>0,b>0,若三點(diǎn)A(a,0),B(0,b),C(2,1)共線,則a+2b的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知各項(xiàng)為正的數(shù)列{an}的首項(xiàng)為a1=2sinθ(θ為銳角),$\sqrt{4-{a}_{n}^{2}}$+a${\;}_{n+1}^{2}$=2,數(shù)列{bn}滿(mǎn)足bn=2n+1an
(1)求a1,a2,a3,寫(xiě)出an(不用證明);
(2)①當(dāng)x∈(0,$\frac{π}{2}$)時(shí),證明sinx<x;
②若θ=$\frac{π}{4}$,證明a1+a2+…+an<π.

查看答案和解析>>

同步練習(xí)冊(cè)答案