【題目】某校高三特長(zhǎng)班的一次月考數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見(jiàn)部分如圖2,據(jù)此解答如下問(wèn)題:
(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計(jì)算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.

【答案】解:(Ⅰ)分?jǐn)?shù)在[50,60)的頻率為0.08, 由莖葉圖知:分?jǐn)?shù)在[50,60)之間的頻率為2,
∴全班人數(shù)為
分?jǐn)?shù)在[70,80)之間的頻數(shù)為10,
分?jǐn)?shù)在[80,90)間的頻數(shù)為25﹣(2+7+10+2)=4,
∴頻率分布直方圖中[80,90)間的矩形的高為:
(Ⅱ)將[80,90)之間的4個(gè)分?jǐn)?shù)編號(hào)為1,2,3,4,
[80,90)之間的2個(gè)分?jǐn)?shù)編號(hào)為5,6,
在[80,100)之間的試卷中任取兩份的基本事件為:
(1,5),(1,6),(2,5),(2,6),(3,5),
(3,6),(4,5),(4,6),(5,6),共9個(gè),
∴至少有一份在[90,100)之間的概率為p=
【解析】(Ⅰ)分?jǐn)?shù)在[50,60)的頻率為0.08,由莖葉圖知:分?jǐn)?shù)在[50,60)之間的頻率為2,由此能求出結(jié)果.(Ⅱ)將[80,90)之間的4個(gè)分?jǐn)?shù)編號(hào)為1,2,3,4,[80,90)之間的2個(gè)分?jǐn)?shù)編號(hào)為5,6,在[80,100)之間的試卷中任取兩份,利用列舉法能求出至少有一份在[90,100)之間的概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5AA1=4,點(diǎn)DAB

中點(diǎn).

(1) 求證: AC⊥BC1

(2) 求證:AC1平面CDB1

(3) 求異面直線(xiàn)AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2, ,E為CD的中點(diǎn),點(diǎn)F在線(xiàn)段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)試確定點(diǎn)F的位置,使得直線(xiàn)EF與平面PDC所成的角和直線(xiàn)EF與平面ABCD所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿(mǎn)足: ,且 ,其前n項(xiàng)和.

(1)求證:為等比數(shù)列;

(2)記為數(shù)列的前n項(xiàng)和.

(i)當(dāng)時(shí),求

(ii)當(dāng)時(shí),是否存在正整數(shù),使得對(duì)于任意正整數(shù),都有?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) 在(t,10﹣t2)上有最大值,則實(shí)數(shù)t的取值范圍為(
A.
B.
C.[﹣2,1)
D.(﹣2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù),),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求圓的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)及曲線(xiàn)的普通方程;

(2)若圓與曲線(xiàn)的公共弦長(zhǎng)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系內(nèi),已知是以點(diǎn)為圓心的圓上的一點(diǎn),折疊該圓兩次使點(diǎn)分別與圓上不相同的兩點(diǎn)(異于點(diǎn))重合,兩次的折痕方程分別為,若圓上存在點(diǎn),使得,其中點(diǎn)、,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是樣本容量為200的頻率分布直方圖.根據(jù)樣本的頻率分布直方圖估計(jì),樣本數(shù)落在[6,10]內(nèi)的頻數(shù)為 ,數(shù)據(jù)落在(2,10)內(nèi)的概率約為

查看答案和解析>>

同步練習(xí)冊(cè)答案