【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的
中點.
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
【答案】
【解析】
試題分析:(1)由勾股定理計算得AC⊥BC,再由直棱柱性質(zhì)得C1C⊥AC,最后根據(jù)線面垂直判定定理得AC⊥平面BCC1B1,即得AC⊥BC1.(2)設CB1與C1B的交點為E,由三角形中位線性質(zhì)得DE∥AC1,再根據(jù)線面平行判定定理得結(jié)論(3)因為DE∥AC1,所以∠CED為AC1與B1C所成的角.再根據(jù)解三角形得所成角的余弦值.
試題解析:(1)證明:在直三棱柱ABC-A1B1C1中,底面三邊長AC=3,BC=4,AB=5,∴AC⊥BC.
又∵C1C⊥AC.∴AC⊥平面BCC1B1.
∵BC1平面BCC1B,∴AC⊥BC1.
(2)證明:設CB1與C1B的交點為E,連接DE,又四邊形BCC1B1為正方形.
∵D是AB的中點,E是BC1的中點,∴DE∥AC1.
∵DE平面CDB1,AC1平面CDB1,
∴AC1∥平面CDB1.
(3)∵DE∥AC1,
∴∠CED為AC1與B1C所成的角.在△CED中,ED=AC1=,
CD=AB=,CE=CB1=2,∴cos∠CED==.
∴異面直線AC1與B1C所成角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且.其中為常數(shù).
(1)求的值及數(shù)列的通項公式;
(2)記,數(shù)列的前項和為,若不等式對任意恒成立 ,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調(diào)查,先將800人按001,002,…,800進行編號.
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數(shù)學與地理的水平測試成績?nèi)缦卤恚?/span>
人 數(shù) | 數(shù) 學 | |||
優(yōu) 秀 | 良 好 | 及 格 | ||
地 理 | 優(yōu) 秀 | 7 | 20 | 5 |
良 好 | 9 | 18 | 6 | |
及 格 | a | 4 | b |
成績分為優(yōu)秀、良好、及格三個等級;橫向、縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?/span>.
①若在該樣本中,數(shù)學成績優(yōu)秀率是,求 的值:
②在地理成績及格的學生中,已知,,求數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列兩個命題: 函數(shù)在[2,+∞)單調(diào)遞增; 關(guān)于的不等式的解集為.若為真命題, 為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班制定了數(shù)學學習方案:星期一和星期日分別解決個數(shù)學問題,且從星期二開始,每天所解決問題的個數(shù)與前一天相比,要么“多一個”要么“持平”要么“少一個”,則在一周中每天所解決問題個數(shù)的不同方案共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時間與每天獲得的利潤(單位:萬元)的有關(guān)數(shù)據(jù).
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利潤 | 2 | 3 | 5 | 6 | 9 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(2)估計星期日獲得的利潤為多少萬元.
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解學生對數(shù)學學案質(zhì)量的滿意度,從高一、高二兩個年級分別隨機調(diào)查了20個學生,得到對學案滿意度評分(滿分100分)的莖葉圖如圖:則下列說法錯誤的是( )
A.高一學生滿意度評分的平均值比高二學生滿意度評分的平均值高
B.高一學生滿意度評分比較集中,高二學生滿意度評分比較分散
C.高一學生滿意度評分的中位數(shù)為80
D.高二學生滿意度評分的中位數(shù)為74
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1 , F2是橢圓 的左、右焦點,點P在橢圓C上,線段PF2與圓x2+y2=b2相切于點Q,且點Q為線段PF2的中點,則 (其中e為橢圓C的離心率)的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三特長班的一次月考數(shù)學成績的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題:
(Ⅰ)求分數(shù)在[70,80)之間的頻數(shù),并計算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分數(shù)在[50,70)之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com