【題目】某校為了解學(xué)生對數(shù)學(xué)學(xué)案質(zhì)量的滿意度,從高一、高二兩個年級分別隨機調(diào)查了20個學(xué)生,得到對學(xué)案滿意度評分(滿分100分)的莖葉圖如圖:則下列說法錯誤的是(
A.高一學(xué)生滿意度評分的平均值比高二學(xué)生滿意度評分的平均值高
B.高一學(xué)生滿意度評分比較集中,高二學(xué)生滿意度評分比較分散
C.高一學(xué)生滿意度評分的中位數(shù)為80
D.高二學(xué)生滿意度評分的中位數(shù)為74

【答案】D
【解析】解:由莖葉圖可得.高二學(xué)生滿意度評分的中位數(shù)為 ,所以D錯誤. 故選:D
【考點精析】認真審題,首先需要了解莖葉圖(莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,底面,直線與底面所成的角為,分別是的中點.

1)求證:直線平面

2)若,求證:直線平面

3)若,求棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線(b>0)的左、右焦點分別為,其一條漸近線方程為y=x,點P在該雙曲線上,且,則=( )

A. 4 B. 4 C. 8 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4AB=5,AA1=4,DAB

中點.

(1) 求證: AC⊥BC1

(2) 求證:AC1平面CDB1

(3) 求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理科考生參加自主招生面試,從道題中(道甲組題和道乙組題)不放回地依次任取道作答.

(1)求該考生在第一次抽到甲組題的條件下,第二次和第三次均抽到乙組題的概率;

(2)規(guī)定理科考生需作答道甲組題和道乙組題,該考生答對甲組題的概率均為,答對乙組題的概率均為,若每題答對得,否則得零分.現(xiàn)該生已抽到道題(道甲組題和道乙組題),求其所得總分的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,將△ABD沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.

(Ⅰ)求證:CD⊥A′B;
(Ⅱ)試在線段A′C上確定一點P,使得二面角P﹣BD﹣C的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣m(x+1)ln(x+1)(m>0)的最大值是0,函數(shù)g(x)=x﹣a(x2+2x)(a∈R). (Ⅰ)求實數(shù)m的值;
(Ⅱ)若當x≥0時,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2, ,E為CD的中點,點F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)試確定點F的位置,使得直線EF與平面PDC所成的角和直線EF與平面ABCD所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系內(nèi),已知是以點為圓心的圓上的一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為,若圓上存在點,使得,其中點、,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案