11.若直線x+(m+1)y-2=0和直線x-y+4=0平行,則實(shí)數(shù)m的值為( 。
A.-2B.0C.1D.2

分析 由直線平行可得-$\frac{1}{m+1}$=1,解方程可得.結(jié)論

解答 解:∵直線x+(m+1)y-2=0和直線x-y+4=0平行,
∴-$\frac{1}{m+1}$=1,解得m=-2,
故選:C.

點(diǎn)評(píng) 本題考查直線的一般式方程和平行關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$y=\sqrt{3}sinx+acosx$的最大值為2,則a的值為(  )
A.±1B.-1C.1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)兩個(gè)非零向量$\overrightarrow{a}$與$\overrightarrow$不共線,若$\overrightarrow{a}$與$\overrightarrow$的起點(diǎn)相同,且$\overrightarrow{a}$,t$\overrightarrow$,$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow$)的終點(diǎn)在同一條直線上,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)x,y滿足$\left\{\begin{array}{l}{x-y≥a}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,且z=ax-2y的最小值是1,則實(shí)數(shù)a=( 。
A.-4B.-$\frac{1}{2}$C.1D.-4或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知i是虛數(shù)單位,若復(fù)數(shù)-i(a+i)(a∈R)的實(shí)部與虛部相等,則a=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.我們知道,在平面內(nèi),點(diǎn)(x0,y0)到直線Ax+By+C=0的距離公式為d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,通過(guò)類比的方法.可求得:在空間中,點(diǎn)(0,1,-1)到平面x+2y+2z+3=0的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若正數(shù) x,y,z 滿足 x+2y+3z=1,則$\frac{1}{x+z}+\frac{8(x+z)}{y+z}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法正確的是(  )
A.命題“若x=1,則x2=1”的否命題是“x=1,則x2≠1”
B.命題“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”
C.“(x-1)(x+3)<0”是“-2<x<1”的充分不必要條件
D.若p∨q為假命題,則p,q中至少有一個(gè)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=$\sqrt{2}sinx-cosx$在x=φ時(shí)取得最大值,則tanφ=( 。
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案