19.已知函數(shù)f(x)=x3+bx2+cx+3,其中b,c∈R,若曲線y=f(x)在點(1,f(1))處的切線方程為3x+y=0,則f(2)=-1.

分析 根據(jù)導數(shù)幾何意義,導數(shù)的幾何意義、切點坐標的應用,得到關于b,c方程組,解得即可.

解答 解:∵f'(x)=3x2+2bx+c,
∴k=f'(1)=3+2b+c=-3①,
又∵f(1)=-3,∴-3=4+b+c②,
由①②解得:b=1,c=-8,
∴f(x)=x3+x2-8x+3,
∴f(2)=8+4-16+3=-1,
故答案為-1.

點評 本題導數(shù)的幾何意義、切點坐標的應用,導數(shù)研究函數(shù)的單調(diào)性,待定系數(shù)法求解析式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知△ABC中,角A,B,C所對的邊依次為a,b,c,其中b=2.
(Ⅰ)若asin2B=$\sqrt{3}$bsinA,求B;
(Ⅱ)若a,b,c成等比數(shù)列,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某大學為調(diào)研學生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分數(shù)的頻率分布直方圖,和B餐廳分數(shù)的頻數(shù)分布表:
B餐廳分數(shù)頻數(shù)分布表
分數(shù)區(qū)間頻數(shù)
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數(shù);
(Ⅱ)從對B餐廳評分在[0,20)范圍內(nèi)的人中隨機選出2人,求2人中恰有1人評分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知雙曲線的兩個焦點坐標是(0,±3),且該雙曲線經(jīng)過點($\sqrt{15}$,4),求這個雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx-$\frac{a}{2}{x^2}$-x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點.
(1)求a的取值范圍;
(2)記兩個極值點分別為x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{a{x}^{2}}{{e}^{x}}$,直線y=$\frac{1}{e}$x為曲線y=f(x)的切線.
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的較小值,設函數(shù)g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函數(shù)h(x)=g(x)-cx2為增函數(shù),求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.對于數(shù)列{an},定義Tn=a1a2+a2a3+…+anan+1,n∈N*
(1)若an=n,是否存在k∈N*,使得Tk=2017?請說明理由;
(2)若a1=3,${T_n}={6^n}-1$,求數(shù)列{an}的通項公式;
(3)令${b_n}=\left\{\begin{array}{l}{T_2}-2{T_1},\begin{array}{l}{\;}{\;}{n=1}\end{array}\\{T_{n+1}}+{T_{n-1}}-2{T_n}\begin{array}{l}{\;},{n≥2,n∈{N^*}}\end{array}\end{array}\right.$,求證:“{an}為等差數(shù)列”的充要條件是“{an}的前4項為等差數(shù)列,且{bn}為等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{{b{\;}^2}}$=1(a>0,b>0)的左、右兩焦點分別為F1(-1,0),F(xiàn)2(1,0),橢圓上有一點A與兩焦點的連線構成的△AF1F2中,滿足∠AF1F2=$\frac{π}{12},∠A{F_2}{F_1}=\frac{7π}{12}$.
(1)求橢圓C的方程;
(2)設點B,C,D是橢圓上不同于橢圓頂點的三點,點B與點D關于原點O對稱,設直線BC,CD,OB,OC的斜率分別為k1,k2,k3,k4,且k1•k2=k3•k4,求OB2+OC2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知點O是△ABC的內(nèi)心,∠BAC=60°,BC=1,則△BOC面積的最大值為$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

同步練習冊答案