5.某地高中年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知這些學(xué)生的原始成績均分布在[50,100]內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見下表,并規(guī)定:A,B,C 三級為合格,D 級為不合格.
 百分制[85,100][70,85)[60,70)[50,60)
 等級 A B C D
為了了解該地高中年級學(xué)生身體素質(zhì)情況,從中抽取了n 名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.
(Ⅰ)求n及頻率分布直方圖中 x,y 的值;
(Ⅱ)根據(jù)統(tǒng)計(jì)思想方法,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該地高中學(xué)生中任選3 人,求至少有1人成績是合格等級的概率;
(Ⅲ)上述容量為n 的樣本中,從 A、C 兩個(gè)等級的學(xué)生中隨機(jī)抽取了3 名學(xué)生進(jìn)行調(diào)研,記ξ為所抽取的3 名學(xué)生中成績?yōu)?nbsp;A 等級的人數(shù),求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

分析 (Ⅰ)由頻率分布直方圖及莖葉圖能求出n及頻率分布直方圖中 x,y 的值.
(Ⅱ)成績是合格等級人數(shù)為45人,抽取的50人中成績是合格等級的頻率為$\frac{9}{10}$,得到從該校學(xué)生中任選1人,成績是合格等級的概率為$\frac{9}{10}$,設(shè)在該校高一學(xué)生中任選3人,至少有1人成績是合格等級的事件為A,利用對立事件概率計(jì)算公式能求出至少有1人成績是合格等級的概率.
(Ⅲ)由題意C等級學(xué)生人數(shù)為9人,A等級的人數(shù)為3人,則ξ的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出ξ的分布列及E(ξ).

解答 解:(Ⅰ)由題意知樣本容量n=$\frac{6}{0.012×10}$=50,
x=$\frac{2}{50×10}$=0.004.
y=$\frac{1-0.04-0.1-0.12-0.56}{10}$=0.018.
(Ⅱ)成績是合格等級人數(shù)為:(1-0.1)×50=45人,
抽取的50人中成績是合格等級的頻率為$\frac{9}{10}$,
故從該校學(xué)生中任選1人,成績是合格等級的概率為$\frac{9}{10}$,
設(shè)在該校高一學(xué)生中任選3人,至少有1人成績是合格等級的事件為A,
則P(A)=1-(1-$\frac{9}{10}$)3=$\frac{999}{1000}$.
(Ⅲ)由題意C等級學(xué)生人數(shù)為0.18×50=9人,A等級的人數(shù)為3人,
∴ξ的可能取值為0,1,2,3,
P(ξ=0)=$\frac{{C}_{9}^{3}}{{C}_{12}^{3}}$=$\frac{21}{55}$,
P(ξ=1)=$\frac{{C}_{9}^{2}{C}_{3}^{1}}{{C}_{12}^{3}}$=$\frac{27}{55}$,
P(ξ=2)=$\frac{{C}_{9}^{1}{C}_{3}^{2}}{{C}_{12}^{3}}$=$\frac{27}{220}$,
P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{12}^{3}}$=$\frac{1}{220}$,
∴ξ的分布列為:

 ξ 0 1 3
 P $\frac{21}{55}$ $\frac{27}{55}$ $\frac{27}{220}$ $\frac{1}{220}$
E(ξ)=$0×\frac{21}{55}+1×\frac{27}{55}+2×\frac{27}{220}+3×\frac{1}{220}$=$\frac{3}{4}$.

點(diǎn)評 本題考查考查頻率分布直方圖、莖葉圖、概率、離散型機(jī)變量分布列等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想,函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$y=\sqrt{{x^2}-2x+10}+1$的值域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.方程2|x-1|=4的解為x=3或x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知隨機(jī)變量X服從正態(tài)分布N(2,σ2)(σ>0),且P(X>0)=0.8,則P(2<X<4)=( 。
A.0.2B.0.3C.0.4D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.4sin15°sin165°-2等于(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.定義:在等式(x2+x+1)n=${D}_{n}^{0}{x}^{2n}$${+D}_{n}^{1}{x}^{2n-1}{+D}_{n}^{2}{x}^{2n-2}+…{+D}_{n}^{2n-1}x{+D}_{n}^{2n}$(n∈N)中,把${D}_{n}^{0}{,D}_{n}^{1}{,D}_{n}^{2}$,…,${D}_{n}^{2n}$叫做三項(xiàng)式的n次系數(shù)列(如三項(xiàng)式的1次系數(shù)列是1,1,1).
(1)填空:三項(xiàng)式的2次系數(shù)列是1,2,3,2,1;三項(xiàng)式的3次系數(shù)列是1,3,6,7,6,3,1.
(2)由楊輝三角數(shù)陣表可以得到二項(xiàng)式系數(shù)的性質(zhì)${C}_{n+1}^{k}{=C}_{n}^{k}{+C}_{n}^{k-1}$,類似的請用三項(xiàng)式n次系數(shù)列中的系數(shù)表示${D}_{n+1}^{k+1}$(1≤k≤2n-1,k∈N)(無須證明);
(3)求${D}_{6}^{3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對兩個(gè)變量x和y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…(xn,yn),則下列說法中不正確的是(  )
A.由樣本數(shù)據(jù)得到的回歸方程$\frac{∧}{y}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$必過樣本中心(${\;}_{x}^{-}$,${\;}_{y}^{-}$)
B.殘差平方和越小的模型,擬合的效果越好
C.若變量y和x之間的相關(guān)系數(shù)為r=-0.9362,則變量和之間具有線性相關(guān)關(guān)系
D.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入x=20,則輸出x的值為(  )
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.研究cosnα的公式,可以得到以下結(jié)論:
2cos2α=(2cosα)2-2,
2cos3α=(2cosα)3-3(2cosα),
2cos4α=(2cosα)4-4(2cosα)2+2,
2cos5α=(2cosα)5-5(2cosα)3+5(2cosα),
2cos6α=(2cosα)6-6(2cosα)4+9(2cosα)2-2,
2cos7α=(2cosα)7-7(2cosα)5+14(2cosα)3-7(2cosα),
以此類推:2cos8α=(2cosα)m+n(2cosα)p+q(2cosα)4-16(2cosα)2+r,
則m+n+p+q+r=28.

查看答案和解析>>

同步練習(xí)冊答案