12.若函數(shù)f(x)滿足$\frac{f'(x)-f(x)}{e^x}$=2x,f(0)=1,則當(dāng)x>0時(shí),$\frac{{f'{{(x)}^{\;}}}}{f(x)}$的取值范圍是(1,2].

分析 構(gòu)造函數(shù),結(jié)合條件求出函數(shù)f(x)的解析式,結(jié)合分式函數(shù)的性質(zhì)利用基本不等式法進(jìn)行求解即可.

解答 解:設(shè)h(x)=$\frac{f(x)}{{e}^{x}}$,
則h′(x)=$\frac{f'(x)-f(x)}{e^x}$=2x,
即h(x)=x2+c,
即f(0)=1,
∴h(0)=$\frac{f(0)}{{e}^{0}}$=1=0+c,則c=1,
則h(x)=$\frac{f(x)}{{e}^{x}}$=x2+1,
則f(x)=ex(x2+1),
則f′(x)=ex(x2+1)+ex(2x)=ex(x2+2x+1),
則$\frac{{f'{{(x)}^{\;}}}}{f(x)}$=$\frac{{e}^{x}({x}^{2}+2x+1)}{{e}^{x}({x}^{2}+1)}$=$\frac{{x}^{2}+2x+1}{{x}^{2}+1}$=1+$\frac{2x}{{x}^{2}+1}$=1+$\frac{2}{x+\frac{1}{x}}$
當(dāng)x>0時(shí),x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,
則0<$\frac{1}{x+\frac{1}{x}}$≤$\frac{1}{2}$,
則0<$\frac{2}{x+\frac{1}{x}}$≤1,
則1<1+$\frac{2}{x+\frac{1}{x}}$≤2,
即$\frac{{f'{{(x)}^{\;}}}}{f(x)}$的取值范圍是(1,2],
故答案為:(1,2].

點(diǎn)評(píng) 本題主要考查函數(shù)值域的求解,根據(jù)條件利用構(gòu)造法求出函數(shù)的解析式,結(jié)合分式函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在?ABCD中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{c}$,$\overrightarrow{BD}$=$\overrightarrowaega2u0$,則下列等式中不正確的是( 。
A.$\overrightarrow{a}+\overrightarrow$=$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow$=$\overrightarrowfrhrce4$C.$\overrightarrow$-$\overrightarrow{a}$=$\overrightarrow5rtlmmc$D.$\overrightarrow{c}$-$\overrightarrowmxm1rpo$=2$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷(xiāo)售公司7月份至12月份銷(xiāo)售某種機(jī)械配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)x和銷(xiāo)售量y之間的一組數(shù)據(jù)如表所示:
月份i789101112
銷(xiāo)售單價(jià)xi(元)99.51010.5118
銷(xiāo)售量yi(件)111086514
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與銷(xiāo)售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷(xiāo)售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷(xiāo)售收入-成本).
參考公式:回歸直線方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,參考數(shù)據(jù):$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若曲線y=lnx的一條切線是直線$y=\frac{1}{2}x+b$,則實(shí)數(shù)b的值為-1+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.五面體ABC-DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
(Ⅰ)求證:G是DE中點(diǎn);
(Ⅱ)求二面角A-CE-F的平面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知命題p:若a<b,則ac2<bc2,命題$q:?{x_0}>0,x_0^2-ln{x_0}=1$.那么下列命題中是真命題的個(gè)數(shù)是2.
(1)pΛq
(2)p∨q
(3)¬pΛ¬q
(4)¬p∨¬q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,△ABC在$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow$,M,N分是$\overrightarrow{CA}$,$\overrightarrow{CB}$上的點(diǎn),且$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{a}$,$\overrightarrow{CN}$=$\frac{1}{2}$$\overrightarrow$,設(shè)$\overrightarrow{AN}$與$\overrightarrow{BM}$ 交于P,用向量$\overrightarrow{a}$,$\overrightarrow$ 表示向量$\overrightarrow{CP}$,并求出AP:PN,BP:PM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某出版社檢驗(yàn)?zāi)硟?cè)書(shū)的成本費(fèi)(單位:元)與印刷數(shù)(單位:千冊(cè))之間的關(guān)系,經(jīng)統(tǒng)計(jì)得到數(shù)據(jù)(表一)并對(duì)其作初步的處理,得到如圖所示的散點(diǎn)圖及一些統(tǒng)一量的值(表二).
表一
x123571011202530
y9.025.274.063.032.592.282.211.891.801.75
表二 
 $\overline{x}$ $\overline{y}$ $\overline{w}$ $\sum_{i=1}^{10}$(xi$-\overline{x}$)2 $\sum_{i=1}^{10}$(wi$-\overline{w}$)2 $\sum_{i=1}^{10}$(xi$-\overline{x}$)(yi$-\overline{y}$) $\sum_{i=1}^{10}$(wi$-\overline{w}$)(yi$-\overline{y}$)
 11.4 3.39 0.249 934.4 934.4-139.03 6.196
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}$wi
(1)根據(jù)散點(diǎn)圖可知更適宜作成本費(fèi)與印刷冊(cè)數(shù)的回歸方程類(lèi)型,試依據(jù)表中數(shù)據(jù)求出關(guān)于的回歸方程(結(jié)果精確到0.01);
(2)從已有十組數(shù)據(jù)的前五組數(shù)據(jù)中任意抽取兩組數(shù)據(jù),求抽取的兩組數(shù)據(jù)中有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值超過(guò)0.02的概率.
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2)…,(un,vn),其回歸直線v=$\widehat{α}$+$\widehat{β}$u的斜估計(jì)分別為
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$$-\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.方程${C}_{28}^{x}$=${C}_{28}^{3x-8}$的解為( 。
A.4 或9B.9C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案