14.將圓x2+y2=4按φ:$\left\{\begin{array}{l}{2x′=5x}\\{y′=2y}\end{array}\right.$,變換后得到曲線的離心率等于$\frac{3}{5}$.

分析 由題意,x=$\frac{2}{5}$x′,y=$\frac{1}{2}$y,代入x2+y2=4,可得$\frac{x{′}^{2}}{\frac{25}{4}}+\frac{y{′}^{2}}{4}=1$,求出a,b,c,即可求得曲線的離心率.

解答 解:由題意,x=$\frac{2}{5}$x′,y=$\frac{1}{2}$y,
代入x2+y2=4,可得$\frac{x{′}^{2}}{\frac{25}{4}}+\frac{y{′}^{2}}{4}=1$,
∴變換后得到橢圓,且a=$\frac{5}{2}$,b=2,
∴c=$\frac{3}{2}$,
∴e=$\frac{c}{a}$=$\frac{3}{5}$.
∴離心率為$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評 本題考查曲線的變換,考查橢圓的離心率,考查學(xué)生的計(jì)算能力,確定曲線的方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且AB=AC=PB=2,O為AC的中點(diǎn),PO⊥平面ABCD,M為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)求三棱錐P-MAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若?x∈(0,$\frac{1}{2}$),9x<logax(a>0且a≠1),則實(shí)數(shù)a的取值范圍是( 。
A.[2${\;}^{-\frac{1}{3}}$,1)B.(0,2${\;}^{-\frac{1}{3}}$]C.(2${\;}^{\frac{1}{3}}$,3)D.(1,2${\;}^{\frac{1}{3}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.隨機(jī)變量ξ的概率分布由如表給出:
x 7 8 9 10
 P(ξ=x) 0.3 0.35 0.20.1
則該隨機(jī)變量ξ的均值是7.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x>0}\\{\frac{1}{2}-|\frac{1}{2}+x|,x≤0}\end{array}\right.$,關(guān)于x的方程f(x)=kx-k至少有兩個不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍為k≥-$\frac{1}{3}$且k≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求下列方程的解集
(1)2sin2x-4sinxcosx+4cos2x=1
(2)4cos2x-2sinxcosx-1=0
(3)cos2x-4sin2x=sin2x-2cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若從4名男生和3名女生中選兩人參加會議,要求女生必須有人參加,則不同的選法有15種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對任意兩個非零的平面向量$\overrightarrow{α}$和$\overrightarrow{β}$,定義運(yùn)算$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{\overrightarrow{α}•\overrightarrow{β}}{\overrightarrow{β}•\overrightarrow{β}}$,現(xiàn)有如下四個命題:
①$\overrightarrow{α}$?$\overrightarrow{β}$=$\overrightarrow{β}$?$\overrightarrow{α}$;
②$\overrightarrow{α}$=(1,2),$\overrightarrow{β}$=(1,1),則$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$;
③若0<|$\overrightarrow{α}$|<|$\overrightarrow{β}$|,$\overrightarrow{α}$與$\overrightarrow{β}$的夾角θ∈[$\frac{π}{4}$,$\frac{π}{2}$),則$\overrightarrow{α}$?$\overrightarrow{β}$∈(0,$\frac{\sqrt{2}}{2}$];
④若|$\overrightarrow{α}$|≥|$\overrightarrow{β}$|>0,$\overrightarrow{α}$與$\overrightarrow{β}$的夾角θ∈(0,$\frac{π}{4}$),且$\overrightarrow{α}$?$\overrightarrow{β}$和$\overrightarrow{β}$?$\overrightarrow{α}$都在集合{$\frac{n}{2}$|n∈Z}上,則$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$.
其中正確命題的序號是②④(把所有正確命題的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S-ABC中,M是SC的中點(diǎn),且AM⊥SB,底面邊長AB=2$\sqrt{2}$,則正三棱錐S-ABC的體積為$\frac{4}{3}$,其外接球的表面積為12π.

查看答案和解析>>

同步練習(xí)冊答案