分析 由反函數(shù)性質(zhì)得函數(shù)f(x)=loga(x2-4x+3)(a>0,a≠1)在x∈[m,+∞)單調(diào),由此能求出m的取值范圍.
解答 解:∵函數(shù)f(x)=loga(x2-4x+3)(a>0,a≠1)在x∈[m,+∞)上存在反函數(shù),
∴函數(shù)f(x)=loga(x2-4x+3)(a>0,a≠1)在x∈[m,+∞)單調(diào),
∵函數(shù)的定義域?yàn)椋?∞,1)∪(3,+∞),y=x2-4x+3的對稱軸為x=2,
∴m∈(3,+∞),
故答案為:(3,+∞).
點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意反函數(shù)的性質(zhì)、二次函數(shù)的單調(diào)性的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
導(dǎo)師 選手 | A | B | C | D |
1 | T | T | ||
2 | T | T | T | T |
3 | T | |||
4 | T | T | ||
5 | T | T | T | |
6 | T | T | ||
7 | T | T | T | T |
8 | T | T | T |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com