20.已知函數(shù)的方程為f(x)=-x4+2x2+3,x∈[-3,2],
(1)求函數(shù)在此區(qū)間上的極值;
(2)求函數(shù)在此區(qū)間上的最值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的端點(diǎn)值和函數(shù)的極值,通過比較求出函數(shù)的最值即可.

解答 解:(1)f′(x)=-4x3+4x=-4x(x+1)(x-1),x∈[-3,2],
令f′(x)>0,解得:x∈[-3,-1)∪(0,1),
令f′(x)<0,解得:x∈(-1,0)∪(1,2],
故f(x)在[-3,-1)遞增,在(-1,0)遞減,在(0,1)遞增,在(1,2]遞減,
故f(x)的極大值是f(-1)和f(1),而f(-1)=f(1)=4,
故函數(shù)的極大值是4,
f(x)的極小值是f(0)=3;
(2)由(1)f(-3)=-60,f(2)=-5,
而函數(shù)的極大值是4,f(x)的極小值是f(0)=3;
故函數(shù)的最小值-60,最大值4.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,2),直線l與AB平行.
(1)求直線l的斜率;
(2)已知圓C:x2+y2-4x=0與直線l相交于M,N兩點(diǎn),且MN=AB,求直線l的方程;
(3)在(2)的圓C上是否存在點(diǎn)P,使得PA2+PB2=12?若存在,求點(diǎn)P的個(gè)數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若O為△ABC所在平面內(nèi)任一點(diǎn),且滿足$\overrightarrow{BC}•(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA})=0$,則△ABC的形狀為( 。
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知經(jīng)過兩點(diǎn)(5,m)和(m,8)的直線的斜率大于1,則m的取值范圍是( 。
A.(5,8)B.(8,+∞)C.($\frac{13}{2}$,8)D.(5,$\frac{13}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.等差數(shù)列{an}中,首項(xiàng)a1<0,公差d>0,Sn為其前n項(xiàng)和,則點(diǎn)(n,Sn)可能在下列哪條曲線上(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}的前n和為Sn,a1=1,當(dāng)n≥2時(shí),an+2Sn-1=n,則S2017=( 。
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知命題p:x2-8x-20≤0,命題q:(x-1-m)(x-1+m)≤0(m>0);若q是p的充分而不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-ax+({a-1})lnx$.討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n+2,則數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{3,n=1}\\{6n-5,n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案