12.已知命題p:x2-8x-20≤0,命題q:(x-1-m)(x-1+m)≤0(m>0);若q是p的充分而不必要條件,求實(shí)數(shù)m的取值范圍.

分析 分別解出不等式,利用q是p的充分而不必要條件即可得出.

解答 解:命題p:x2-8x-20≤0,解得:-2≤x≤10.
命題q:(x-1-m)(x-1+m)≤0(m>0),解得:1-m≤x≤1+m.
若q是p的充分而不必要條件,∴$\left\{\begin{array}{l}{-2≤1-m}\\{1+m≤10}\end{array}\right.$,解得m≤3.
∴實(shí)數(shù)m的取值范圍是(-∞,3].

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖是4為評(píng)委給某作品打出的分?jǐn)?shù)的莖葉圖,那么4為評(píng)委打出的分?jǐn)?shù)的方差是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(-$\sqrt{3}$,t).若$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{c}$垂直,則實(shí)t數(shù)的值為( 。
A.1B.-1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)的方程為f(x)=-x4+2x2+3,x∈[-3,2],
(1)求函數(shù)在此區(qū)間上的極值;
(2)求函數(shù)在此區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=2x(x≤0)的值域是( 。
A.(0,1)B.(-∞,1)C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知 a=$\frac{-3-i}{1+2i}$(i是虛數(shù)單位),那么 a 2=-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,且b=3,c=1,A=2B
(1)求a的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,A=60°,c=2,且${S_{△ABC}}=\frac{{\sqrt{3}}}{2}$,則邊a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知兩個(gè)半徑不等的圓盤疊放在一起(有一軸穿過它們的圓心),兩圓盤上分別有互相垂直的兩條直徑將其分為四個(gè)區(qū)域,小圓盤上所寫的實(shí)數(shù)分別記為x1,x2,x3,x4,大圓盤上所寫的實(shí)數(shù)分別記為y1,y2,y3,y4,如圖所示.將小圓盤逆時(shí)針旋轉(zhuǎn)i(i=1,2,3,4)次,每次轉(zhuǎn)動(dòng)90°,記Ti(i=1,2,3,4)為轉(zhuǎn)動(dòng)i次后各區(qū)域內(nèi)兩數(shù)乘積之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,則以下結(jié)論正確的是(  )
A.T1,T2,T3,T4中至少有一個(gè)為正數(shù)B.T1,T2,T3,T4中至少有一個(gè)為負(fù)數(shù)
C.T1,T2,T3,T4中至多有一個(gè)為正數(shù)D.T1,T2,T3,T4中至多有一個(gè)為負(fù)數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案