17.已知 a=$\frac{-3-i}{1+2i}$(i是虛數(shù)單位),那么 a 2=-2i.

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵a=$\frac{-3-i}{1+2i}$,
∴${a}^{2}=(\frac{-3-i}{1+2i})^{2}=[\frac{(-3-i)(1-2i)}{5}]^{2}=(\frac{-5+5i}{5})^{2}$=(-1+i)2=-2i.
故答案為:-2i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在正四棱錐P-ABCD中,所有的棱長(zhǎng)均為2,則側(cè)棱與底面ABCD所成的角和該四棱錐的體積分別為( 。
A.45°,$\frac{{4\sqrt{2}}}{3}$B.30°,$\frac{{4\sqrt{2}}}{3}$C.60°,$\frac{{2\sqrt{2}}}{3}$D.75°,$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知經(jīng)過(guò)兩點(diǎn)(5,m)和(m,8)的直線的斜率大于1,則m的取值范圍是( 。
A.(5,8)B.(8,+∞)C.($\frac{13}{2}$,8)D.(5,$\frac{13}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}的前n和為Sn,a1=1,當(dāng)n≥2時(shí),an+2Sn-1=n,則S2017=( 。
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知命題p:x2-8x-20≤0,命題q:(x-1-m)(x-1+m)≤0(m>0);若q是p的充分而不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2x3+ax與g(x)=bx2+cx圖象都過(guò)點(diǎn)P(2,0)且在點(diǎn)P處有公切線,求
(1)f(x)和g(x)的表達(dá)式及公切線方程;
(2)若$F(x)=f'(1)lnx+\frac{g(x)}{16}$,求F(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-ax+({a-1})lnx$.討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若$sin(\frac{π}{4}+α)=\frac{1}{2}$,則$\frac{{sin(\frac{5π}{4}+α)}}{{cos(\frac{9π}{4}+α)}}•cos(\frac{7π}{4}-α)$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.日晷,是中國(guó)古代利用日影測(cè)得時(shí)刻的一種計(jì)時(shí)工具,又稱“日規(guī)”.其原理就是利用太陽(yáng)的投影方向來(lái)測(cè)定并劃分時(shí)刻.利用日晷計(jì)時(shí)的方法是人類在天文計(jì)時(shí)領(lǐng)域的重大發(fā)明,這項(xiàng)發(fā)明被人類沿用達(dá)幾千年之久.如圖是故宮中的一個(gè)日晷,則根據(jù)圖片判斷此日晷的側(cè)(左)視圖可能為  (  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案