1.在△ABC中,A=60°,c=2,且${S_{△ABC}}=\frac{{\sqrt{3}}}{2}$,則邊a=$\sqrt{3}$.

分析 先根據(jù)三角形的面積公式求出b的值,再根據(jù)余弦定理即可求出.

解答 解:∵A=60°,c=2,且S△ABC=$\frac{\sqrt{3}}{2}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2b×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
解得b=1,
由余弦定理可得a2=b2+c2-2bccosA=1+4-4×$\frac{1}{2}$=3.
∴a=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點評 本題考查了余弦定理和三角形的面積公式,考查了學生的運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若O為△ABC所在平面內(nèi)任一點,且滿足$\overrightarrow{BC}•(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA})=0$,則△ABC的形狀為( 。
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知命題p:x2-8x-20≤0,命題q:(x-1-m)(x-1+m)≤0(m>0);若q是p的充分而不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-ax+({a-1})lnx$.討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.過原點作曲線y=ex的切線,則切點的坐標為(1,e),切線的斜率為e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若$sin(\frac{π}{4}+α)=\frac{1}{2}$,則$\frac{{sin(\frac{5π}{4}+α)}}{{cos(\frac{9π}{4}+α)}}•cos(\frac{7π}{4}-α)$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點是A(0,1),B,C,是橢圓上兩點,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0.
(1)若橢圓的另一個頂點是拋物線y2=8x的焦點,求橢圓的離心率;
(2)若△ABC面積的最大值為$\frac{27}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若數(shù)列{an}的前n項和Sn=3n2-2n+2,則數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}{3,n=1}\\{6n-5,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在平面直角坐標系中,已知角θ的頂點在坐標原點,始邊與x軸正半軸重合,終邊在直線y=3x上,則sin2θ=$\frac{3}{5}$.

查看答案和解析>>

同步練習冊答案