已知m、n、α、β∈R,m<n,α<β,若α、β是函數(shù)f(x)=2(x-m)(x-n)-7的零點(diǎn),則m、n、α、β四個(gè)數(shù)按從小到大的順序是
 
(用符號(hào)“<”連接起來(lái)).
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可知α、β是函數(shù)y=2(x-m)(x-n)與函數(shù)y=7的交點(diǎn)的橫坐標(biāo),且m、n是函數(shù)y=2(x-m)(x-n)與x軸的交點(diǎn)的橫坐標(biāo),從而判斷大小關(guān)系.
解答: 解:∵α、β是函數(shù)f(x)=2(x-m)(x-n)-7的零點(diǎn),
∴α、β是函數(shù)y=2(x-m)(x-n)與函數(shù)y=7的交點(diǎn)的橫坐標(biāo),
且m、n是函數(shù)y=2(x-m)(x-n)與x軸的交點(diǎn)的橫坐標(biāo),
故由二次函數(shù)的圖象可知,
α<m<n<β;
故答案為:α<m<n<β.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與函數(shù)圖象的關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,f(-2)=3,對(duì)任意x∈R,f'(x)>3,則f(x)>3x+9的解集為(  )
A、.(-2,2)
B、(-2,+∞)
C、.(-∞,-2)
D、.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2
x
2
+sinx,求f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列問(wèn)題不是解決問(wèn)題的算法的是( 。
A、方程x2-4x+3=0有兩個(gè)不等的實(shí)根
B、解一元一次方程的步驟是去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、化系數(shù)為1
C、從中山到北京先坐汽車,再坐火車
D、解不等式ax+3>0時(shí),第一步移項(xiàng),第二步討論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是第二象限角,則cosα的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)t∈R,m,n都是不為1的正數(shù),函數(shù)f(x)=mx+t•nx若m=2,n=
1
2
,且t≠0,請(qǐng)判斷函數(shù)y=f(x)的圖象是否具有對(duì)稱性,如果具有,請(qǐng)求出對(duì)稱軸方程或?qū)ΨQ中心坐標(biāo);若不具有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班共有60名學(xué)生,現(xiàn)領(lǐng)到10張聽(tīng)取學(xué)術(shù)報(bào)告的入場(chǎng)券,先用抽簽法和隨機(jī)數(shù)表法把10張入場(chǎng)券分發(fā)下去,試寫出過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=4x的焦點(diǎn)焦點(diǎn)F作傾斜角為α的直線,交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),
(1)若α=45°,求線段AB的中點(diǎn)C到拋物線準(zhǔn)線的距離;
(2)求證:y1y2=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+2ln(ax+1),其中實(shí)常a∈(1,6).
(Ⅰ)當(dāng)a=2時(shí),比較f(x)與6x2+6x的大小;
(Ⅱ)已知函數(shù)f(x)的圖象與直線y=6x相切,證明x∈(1,3)時(shí),(x+3)f(
x
-1
2
)<6x-6.

查看答案和解析>>

同步練習(xí)冊(cè)答案