已知函數(shù)f(x)=2cos2
x
2
+sinx,求f(x)的最小正周期和單調(diào)遞增區(qū)間.
考點(diǎn):正弦函數(shù)的單調(diào)性,兩角和與差的正弦函數(shù),二倍角的余弦,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:由條件根據(jù)三角函數(shù)的恒等變換求得f(x)=
2
sin(x+
π
4
)+1,可得它的最小正周期.令2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2
,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間.
解答: 解:函數(shù)f(x)=2cos2
x
2
+sinx=cosx+sinx+1=
2
sin(x+
π
4
)+1,
故它的最小正周期為
2
=π.
令2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2
,k∈z,求得2kπ-
4
≤x+
π
4
≤2kπ+
π
4
,k∈z,
故函數(shù)的增區(qū)間為[2kπ-
4
,2kπ+
π
4
],k∈z.
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,三角函數(shù)的周期性和求法,正弦函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3+3bx(a,b為實(shí)數(shù),a<0,b>0),當(dāng)x∈[0,1]時(shí),有f(x)∈[0,1],則b的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(1,0)和直線l:x=2的距離之比為
2
2
,設(shè)動(dòng)點(diǎn)P的軌跡為曲線E,過(guò)點(diǎn)F作垂直于x軸的直線與曲線E相交于A,B兩點(diǎn),直線l:y=mx+n與曲線E交于C,D兩點(diǎn),與線段AB相交于一點(diǎn)(與A,B不重合)
(Ⅰ)求曲線E的方程;
(Ⅱ)當(dāng)直線l與圓x2+y2=1相切時(shí),四邊形ABCD的面積是否有最大值,若有,求出其最大值,及對(duì)應(yīng)的直線l的方程;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高和底面直徑相等的圓柱的表面積和球O的表面積相等,則該圓柱與球O的體積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)[m]表示不超過(guò)實(shí)數(shù)m的最大整數(shù),則在直角坐標(biāo)平面xOy上,則滿足[x]2+[y]2=50的點(diǎn)P(x,y)所成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x-aex(a∈R,e為自然對(duì)數(shù)的底).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2x對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2+x(a,b∈R,ab≠0)的圖象如圖所示(x1,x2為兩個(gè)極值點(diǎn)),且|x1|>|x2|則有( 。
A、a>0,b>0
B、a<0,b<0
C、a<0,b>0
D、a>0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n、α、β∈R,m<n,α<β,若α、β是函數(shù)f(x)=2(x-m)(x-n)-7的零點(diǎn),則m、n、α、β四個(gè)數(shù)按從小到大的順序是
 
(用符號(hào)“<”連接起來(lái)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知△ABC頂點(diǎn)坐標(biāo)分別是A(-1,2,3),B(2,-2,3),C(
1
2
5
2
,3).求證:△ABC是直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案