8.已知{an}是等比數(shù)列,a1=3,a4=24,數(shù)列{bn}滿足b1=1,b4=-8,且{an+bn}是等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{an+bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和.

分析 (Ⅰ)利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式先求得公差和公比,即可求數(shù)列的通項(xiàng)公式;
(Ⅱ)利用分組求和的方法求解數(shù)列的和,由等差數(shù)列及等比數(shù)列的前n項(xiàng)和公式即可求解數(shù)列的和.

解答 解:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q,由題意得a4=a1q3,
∴q3=8,
解得q=2,
∴an=3×2n-1,
設(shè)等差數(shù)列{an+bn} 的公差為d,由題意得:a4+b4=(a1+b1 )+3d,
∴24-8=(1+3)+3d,
解得d=4,
∴an+bn=4+4(n-1)=4n,
∴bn=4n-3×2n-1
(Ⅱ)數(shù)列{an}的前n項(xiàng)和為$\frac{3(1-{2}^{n})}{1-2}$=-3+3×2n,
數(shù)列{an+bn}的前n項(xiàng)和為$\frac{1}{2}$n(4n+4)=n(2n+2)=2n2+2n,
故{bn}的前n項(xiàng)和為2n2+2n+3-3×2n

點(diǎn)評(píng) 本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式,考查了利用分組求和的方法求解數(shù)列的前n項(xiàng)和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a∈(0,1),則不等式ln(3a-1)<0成立的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知結(jié)論“圓x2+y2=r2(r>0)上一點(diǎn)P(x0,y0)處切線方程為$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$”.類比圓的這個(gè)結(jié)論得到關(guān)于橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$在點(diǎn)P(x0,y0)的切線方程為$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{^{2}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.學(xué)校高一數(shù)學(xué)考試后,對(duì)90分(含90分)以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,分?jǐn)?shù)在120-130分的學(xué)生人數(shù)為30人
(1)求這所學(xué)校分?jǐn)?shù)在90-140分的學(xué)生人數(shù)
(2)請(qǐng)根據(jù)頻率分布直方圖估計(jì)這所學(xué)校學(xué)生分?jǐn)?shù)在90-140分的學(xué)生的平均成績(jī)
(3)為進(jìn)一步了解學(xué)生的學(xué)習(xí)情況,按分層抽樣方法從分?jǐn)?shù)在90-100分和120-130分的學(xué)生中抽出5人,從抽出的學(xué)生中選出2人分別做問(wèn)卷A和問(wèn)卷B,求90-100分的學(xué)生做問(wèn)卷A,120-130分的學(xué)生做問(wèn)卷B的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)α∈{-2,-1,$\frac{1}{3}$,1,2,3},則使冪函數(shù)y=xa為奇函數(shù)且在(0,+∞)上單調(diào)遞減的a個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知各項(xiàng)不為0的等差數(shù)列{an}滿足a6-a${\;}_{7}^{2}$+a8=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2•b8•b11=( 。
A.8B.2C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直線(tan$\frac{π}{3}$)•x+y+1=0的傾斜角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知扇形的周長(zhǎng)是6cm,面積是2cm2,則扇形的圓心角的弧度數(shù)為( 。
A.1B.4C.1 或4D.2 或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.
(1)求sinC的值;
(2)設(shè)BC=15,求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案