9.復(fù)數(shù)z=$\frac{2i}{1+i}$(i為虛數(shù)單位)的虛部為1.

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:z=$\frac{2i}{1+i}$$\frac{2i(1-i)}{(1+i)(1-i)}$=i+1的虛部為1.
故答案為:1.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從區(qū)間[-2,2]中隨機(jī)選取一個實(shí)數(shù)a,則函數(shù)f(x)=4x-a•2x+1+1有零點(diǎn)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(文)某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3:3:m,現(xiàn)用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為50的樣本,若從高三年級抽取的學(xué)生人數(shù)為20,則實(shí)數(shù)m=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.現(xiàn)從6人中選4人去參加某娛樂活動,該活動共有A,B,C,D四個游戲.要求每個游戲有一人參加,且一人只能參加一個游戲,如果這6人中甲,乙兩人不熊參加D游戲,則不同的選擇方案種數(shù)有( 。
A.264B.240C.216D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知α為銳角,且sinα=$\frac{4}{5}$,則cos(π+α)=( 。
A.一$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$E:\frac{x^2}{5}+\frac{y^2}{4}=1$的右焦點(diǎn)為F,設(shè)直線l:x=5與x軸的交點(diǎn)為E,過點(diǎn)F且斜率為k的直線l1與橢圓交于A,B兩點(diǎn),M為線段EF的中點(diǎn).
(I)若直線l1的傾斜角為$\frac{π}{4}$,|AB|的值;
(Ⅱ)設(shè)直線AM交直線l于點(diǎn)N,證明:直線BN⊥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)A(1,0),點(diǎn)B是y軸正半軸上一點(diǎn),若I是△AOB(O是坐標(biāo)原點(diǎn))的內(nèi)心,且$\overrightarrow{OI}$•$\overrightarrow{OA}=\frac{1}{3}$,則△AOB內(nèi)切圓的標(biāo)準(zhǔn)方程是(x-$\frac{1}{3}$)2+(y-$\frac{1}{3}$)2=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=xlnx的圖象上有A、B兩點(diǎn),其橫坐標(biāo)為x1,x2(0<x1<x2<1)且滿足f(x1)=f(x2),若k=5($\frac{{x}_{1}+{x}_{2}}{2}$+$\sqrt{{x}_{1}{x}_{2}}$),且k為整數(shù)時,則k的值為(  )(參考數(shù)據(jù):e≈2.72)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{a{x}^{2}+x+a}{{e}^{x}}$,a∈R.
(1)若a≠0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若a=0,x1<x<x2<2,證明:$\frac{f(x)-f({x}_{1})}{x-{x}_{1}}$>$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

同步練習(xí)冊答案