某制藥廠準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi),對(duì)產(chǎn)品進(jìn)行宣傳,在一年內(nèi),預(yù)計(jì)年銷量Q(萬(wàn)件)與廣告費(fèi)x(萬(wàn)元)之間的函數(shù)關(guān)系為Q=
3x+1
x+1
(x≥0).已知生產(chǎn)此產(chǎn)品的年固定投入為3萬(wàn)元,每生產(chǎn)1萬(wàn)件此產(chǎn)品仍需后期再投入32萬(wàn)元,若每件售價(jià)為“年平均每件投入的150%”與“年平均每件所占廣告費(fèi)的50%”之和(注:投入包括“年固定投入”與“后期再投入”).
(1)試將年利潤(rùn)W萬(wàn)元表示為年廣告費(fèi)x萬(wàn)元的函數(shù),并判斷當(dāng)年廣告費(fèi)投入100萬(wàn)元時(shí),企業(yè)虧損還是盈利?
(2)當(dāng)年廣告費(fèi)投入多少萬(wàn)元時(shí),企業(yè)年利潤(rùn)最大?
考點(diǎn):函數(shù)最值的應(yīng)用
專題:計(jì)算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由由題意,每件售價(jià)為
3+32Q
Q
×150%+
x
Q
×
50%=
9+96Q+x
2Q
元,從而寫出w=
-x2+98x+35
2(x+1)
,代入求x=100時(shí)的正負(fù)即可;
(2)化簡(jiǎn)w=
-x2+98x+35
2(x+1)
=-
1
2
((x+1)+
64
x+1
)+50,利用基本不等式求解.
解答: 解:(1)由題意,
每件售價(jià)為
3+32Q
Q
×150%+
x
Q
×
50%=
9+96Q+x
2Q
,
則w=
9+96Q+x
2Q
•Q-x-3-32Q=
9+96Q+x-2x-6-64Q
2

=
-x2+98x+35
2(x+1)
,
則當(dāng)x=100時(shí),
w=
-10000+9800+35
2×101
<0,
故企業(yè)虧損.
(2)w=
-x2+98x+35
2(x+1)
=-
1
2
((x+1)+
64
x+1
)+50
≤50-8=42(當(dāng)且僅當(dāng)x=7時(shí),等號(hào)成立).
故當(dāng)年廣告費(fèi)投入7萬(wàn)元時(shí),企業(yè)年利潤(rùn)最大.
點(diǎn)評(píng):本題考查了學(xué)生將實(shí)際問題化為數(shù)學(xué)問題的能力,同時(shí)考查了學(xué)生化簡(jiǎn)能力及基本不等式求最值問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π-α)=
4
5
,α∈(0,
π
2
)

(1)求sin2α的值;
(2)求函數(shù)f(x)=
5
3
cosαsin2x-cos2x的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算log36-log32+4 
1
2
-3 log34的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
1-x
ax
+lnx,(a≠0)
(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在區(qū)間(
1
2
,2)
上的值域;
(3)當(dāng)a=1時(shí),問:是否存在正整數(shù)M,使得當(dāng)自然數(shù)n≥M時(shí),恒有l(wèi)nn>
1
2
+
1
3
+
1
4
+…+
1
n
成立?若存在,求出M的最小值,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的極坐標(biāo)方程是ρcosθ+ρsinθ-m=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,又知曲線C的參數(shù)方程是
x=2cosθ
y=sinθ
(θ為參數(shù),θ∈[0,
3
]
),如果直線l與曲線C有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+b
1+x2
是定義在(-1,1)上的奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并用單調(diào)性定義進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足:①?s,t∈R有f(s+t)=f(s)+f(t)+st;②f(3)=6;③?x>0,有f(x)>0.
(1)求f(1)的值;
(2)證明;函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(3)求滿足f(2x)+f(2x+1)<4的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過橢圓C:
y2
9
+
x2
4
=1
上一動(dòng)點(diǎn)P(x0,y0 ),x0y0≠0,引圓O:x2+y2=4的兩條切線PA、PB,A、B為切點(diǎn),
(1)如果P點(diǎn)坐標(biāo)為(-1,
3
3
2
)
,求直線AB的方程;
(2)兩條切線PA、PB是否可能互相垂直?若能垂直,求出點(diǎn)P的坐標(biāo);若不可能垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,已知點(diǎn)A(2,
π
2
),B(2,π),點(diǎn)M是圓ρ=2cosθ上任意一點(diǎn),則點(diǎn)M到直線AB的距離的最小值為( 。
A、
2
B、
3
2
2
-1
C、
3
2
2
D、
3
2
2
+1

查看答案和解析>>

同步練習(xí)冊(cè)答案