19.已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合
(1)若終邊經(jīng)過點(diǎn)P(-1,2),求sin αcos α的值;
(2)若角α的終邊在直線y=-3x上,求tan α+$\frac{3}{cosα}$的值.

分析 (1)利用任意角的三角函數(shù)的定義,求得sin αcos α的值.
(2)利用任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系求得tanα、cosα的值,可得tan α+$\frac{3}{cosα}$的值.

解答 解:(1)角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,若角α終邊經(jīng)過點(diǎn)P(-1,2),
則x=-1,y=2,r=|OP|=$\sqrt{5}$,∴sin αcosα=$\frac{y}{r}•\frac{x}{r}$=$\frac{2}{\sqrt{5}}•\frac{-1}{\sqrt{5}}$=-$\frac{2}{5}$.
(2)∵角α的終邊在直線y=-3x上,∴tanα=-3=$\frac{sinα}{cosα}$,sin2α+cos2α=1,
當(dāng)α的終邊在第二象限,則cosα=-$\frac{\sqrt{10}}{10}$,∴tan α+$\frac{3}{cosα}$=-3-3$\sqrt{10}$;
當(dāng)α的終邊在第四象限,則cosα=$\frac{\sqrt{10}}{10}$,∴tan α+$\frac{3}{cosα}$=-3+3$\sqrt{10}$.
綜上可得,tan α+$\frac{3}{cosα}$的值為-3-3$\sqrt{10}$或-3+3$\sqrt{10}$.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若曲線y=ax2-ln(x+1)在點(diǎn)(1,a)處的切線平行于x軸,則a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知虛數(shù)z滿足|2z+5|=|z+10|.
(1)求|z|;
(2)是否存在實(shí)數(shù)m,是$\frac{z}{m}$+$\frac{m}{z}$為實(shí)數(shù),若存在,求出m的值;若不存在,說明理由;
(3)若(1-2i)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第一、三象限的角平分線上,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.a(chǎn)1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,則數(shù)列{an}的第6項(xiàng)是$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的函數(shù)$f(x)=\frac{1}{3}a{x^3}+{x^2}+ax+1$既有極大值又有極小值,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(1,+∞)B.[-1,0)∪(0,1]C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)M的坐標(biāo)為(5,θ),且tan θ=-$\frac{4}{3}$,$\frac{π}{2}$<θ<π,則點(diǎn)M的直角坐標(biāo)為(-3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.k>3是方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示雙曲線的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}中,a1=1,前100項(xiàng)和S100=10000.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^{{a_n}+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$,$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,f(x)=|$\overrightarrow{a}-x\overrightarrow{e}$|是定義在R上的函數(shù),
(1)若f(x)≥f(1)對所有x∈R都成立,求證:($\overrightarrow{a}-\overrightarrow{e}$)⊥$\overrightarrow{e}$;
(2)求當(dāng)x取何值時,f(x)取到最小值.

查看答案和解析>>

同步練習(xí)冊答案