在△ABC中,三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且2bcosC=2a-c.
(1)求角B;
(2)若△ABC的面積S=
3
3
4
,a+c=4,求b的值.
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:(1)已知等式利用正弦定理化簡(jiǎn),利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式變形,根據(jù)sinC不為0求出cosB的值,即可確定出B的度數(shù);
(2)利用三角形面積公式列出關(guān)系式,將已知面積與sinB的值代入求出ac的值,利用余弦定理列出關(guān)系式,將cosB的值代入并利用完全平方公式變形,把a(bǔ)+c與ac的值代入即可求出b的值.
解答: 解:(1)根據(jù)正弦定理化簡(jiǎn)2bcosC=2a-c,得:2sinBcosC=2sinA-sinC,
即2sinBcosC=2sin(B+C)-sinC,
整理得2sinCcosB=sinC,
∵sinC≠0,
∴cosB=
1
2
,
則B=
π
3
;
(2)∵△ABC的面積S=
3
3
4
,sinB=
3
2
,
∴S=
1
2
acsinB=
3
3
4
,即
3
4
ac=
3
3
4
,
∴ac=3,
∵a+c=4,cosB=
1
2

∴由余弦定理得:b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac=16-9=7,
則b=
7
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)圓的圓心為(0,1),半徑為1,對(duì)于圓上任一點(diǎn)P(x,y)恒有x+y+m>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:
(1)(x+a)(-x+1)>0;
(2)(ax+3)(x-1)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg
1+ax
1+2x
是奇函數(shù).
(1)求實(shí)數(shù)b的取值范圍;
(2)判斷函數(shù)f(x)在區(qū)間(-b,b)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
25
+
y2
9
=1的左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上一點(diǎn),且∠F1PF2=α.求△F1PF2的面積.(用a、b、α表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)f(x)=
ax
x2-1
(a≠0)在區(qū)間(-1,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(2-a)x+4,a∈R
(1)若a=8,求不等式f(x)>0的解;
(2)若f(x)=0有兩根,一根小于2,另一根大于3且小于4,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)=x2+(2-a)x+4在區(qū)間[1,3]內(nèi)有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=x2-2x-3在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高一一班有36名同學(xué)參加數(shù)學(xué)物理化學(xué)課外探究小組,每名同學(xué)至多參加兩個(gè)小組,已知參加數(shù)學(xué)物理化學(xué)小組的人數(shù)分別為26、15、13,同時(shí)參加數(shù)學(xué)和物理小組,物理和化學(xué)小組,數(shù)學(xué)和化學(xué)小組的人數(shù)分別為a,b,c,求a+b+c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案