15.已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為( 。
A.$\frac{1-a}{2}$B.$\frac{a}{2}$C.1-aD.$\frac{1+a}{2}$

分析 根據(jù)隨機(jī)變量X服從標(biāo)準(zhǔn)正態(tài)分布N(0,σ2),得到正態(tài)曲線(xiàn)關(guān)于X=0對(duì)稱(chēng),利用P(|X|<2)=a,可求P(X>2).

解答 解:∵隨機(jī)變量X服從標(biāo)準(zhǔn)正態(tài)分布N(0,σ2),
∴正態(tài)曲線(xiàn)關(guān)于X=0對(duì)稱(chēng),
∵P(|X|<2)=a,
∴P(X>2)=$\frac{1-a}{2}$,
故選A.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線(xiàn)的特點(diǎn)及曲線(xiàn)所表示的意義,本題解題的關(guān)鍵是利用正態(tài)曲線(xiàn)的對(duì)稱(chēng)性,是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.方程x+m=-$\sqrt{4-{x}^{2}}$有且僅有一解,則實(shí)數(shù)m的取值范圍是{-2$\sqrt{2}$}∪(-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.與cos50°cos20°+sin50°sin20°相等的是( 。
A.cos30°B.sin30°C.cos70°D.sin70°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)△AnBnCn的三邊長(zhǎng)分別是an,bn,cn,△AnBnCn的面積為Sn,n∈N*,若b1>c1,b1+c1=2a1,an+1=an,bn+1=$\frac{{{a_n}+{c_n}}}{2},{c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,則( 。
A.{Sn}為遞減數(shù)列B.{Sn}為遞增數(shù)列
C.{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列D.{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若z(1-i)=|1-i|+i(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A.$\frac{{\sqrt{2}-1}}{2}$B.$\sqrt{2}-1$C.1D.$\frac{{\sqrt{2}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PB=PC=AB,PB⊥平面PDC,E為棱PC的中點(diǎn),F(xiàn)為AB中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:平面PBC⊥平面ABCD;
(3)求二面角E-DB-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)a=sin1,b=cos1,c=tan1,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知△ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,若A=45°,AC=4,則△ABC最短邊的邊長(zhǎng)等于( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{4\sqrt{6}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知拋物線(xiàn)x2=2y,過(guò)動(dòng)點(diǎn)P作拋物線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為A,B,且kPAkPB=-2.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)試問(wèn)直線(xiàn)AB是否恒過(guò)定點(diǎn)?若恒過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案