13.求滿足下列條件的方法種數(shù):
(1)將4個不同的小球,放進(jìn)4個不同的盒子,且沒有空盒子,共有多少種放法?
(2)將4個不同的小球,放進(jìn)3個不同的盒子,且沒有空盒子,共有多少種放法?(最后結(jié)果用數(shù)字作答)

分析 (1)根據(jù)題意,將4個小球全排列,對應(yīng)放入4個不同的盒子,由排列數(shù)公式計算即可得答案;
(2)分2步進(jìn)行分析:①、將4個小球分成3組,其中1組2個小球,剩余2組各1個小球,②、將分好的3組全排列,對應(yīng)放入3個不同的盒子,由分步計數(shù)原理計算可得答案.

解答 解:(1)根據(jù)題意,將4個小球全排列,對應(yīng)放入4個不同的盒子,
有A44=24種情況,即有24種放法;
(2)分2步進(jìn)行分析:
①、將4個小球分成3組,其中1組2個小球,剩余2組各1個小球,有C42=6種分組方法,
②、將分好的3組全排列,對應(yīng)放入3個不同的盒子,有A33=6種情況,
則此時有6×6=36種不同的放法.

點評 本題考查排列、組合的應(yīng)用,注意“沒有空盒子”這一條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在正三角形ABC中,D是BC上的點,$AB=1,BD=\frac{1}{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的右頂點為(1,0),且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的上焦點為F,過F且斜率為-$\sqrt{2}$的直線l與橢圓C交于A,B兩點,若$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$(其中O為坐標(biāo)原點),求點P的坐標(biāo)及四邊形OAPB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等比數(shù)列{an}的公比為q,其前n項的積為Tn,并且滿足條件a1>1,a49a50-1>0,(a49-1)(a50-1)<0.給出下列結(jié)論:
①0<q<1;
②a1a99-1<0;
③T49的值是Tn中最大的;
④使Tn>1成立的最大自然數(shù)n等于98.
其中所有正確結(jié)論的序號是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{a}$=1(a>0)與雙曲線$\frac{{x}^{2}}{{m}^{2}+2}$+$\frac{{y}^{2}}{{m}^{2}-4}$=1有相同的焦點,則橢圓的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C的兩個焦點是F1(-2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過點A(0,$\sqrt{5}$).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過橢圓C的左焦點F1(-2,0)且斜率為1的直線l與橢圓C交于P、Q兩點,求線段PQ的長(提示:|PQ|=$\sqrt{1+{k}^{2}}$|x1-x2|).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f(x)是定義在R上恒不為零的函數(shù),且對任意的x、y∈R都有f(x)•f(y)=f(x+y),若a1=$\frac{1}{2}$,an=f(n)(n∈N*),則數(shù)列{an}的前n項和Sn的取值范圍是( 。
A.[$\frac{1}{2}$,1)B.[$\frac{1}{2}$,1]C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若將函數(shù)y=cos(2x-$\frac{π}{4}$)的圖象上的各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平移$\frac{π}{6}$個單位,則所得函數(shù)圖象的一條對稱軸為( 。
A.x=$\frac{π}{12}$B.x=$\frac{π}{4}$C.x=$\frac{5π}{6}$D.x=$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對50名高中學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
 喜歡打籃球不喜歡打籃球合計
男生 5 
女生10  
合計   
已知在這50人中隨機抽取1人,抽到喜歡打籃球的學(xué)生的概率為$\frac{3}{5}$
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 p(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步練習(xí)冊答案