分析 令g(x)=0,化簡函數(shù)g(x)=$\left\{\begin{array}{l}{2a-x-\frac{3}{x},x≤a}\\{x-\frac{3}{x},x>a}\end{array}\right.$,從而不妨設(shè)f(x)=0的3個根為x1,x2,x3,且x1<x2<x3,討論當x>a時,求得兩根,x≤a時,再分①a≤-1,②-1<a≤3,③a>3,運用等差數(shù)列的中項的性質(zhì),進而確定a的值.
解答 解:函數(shù)f(x)=|x-a|-$\frac{3}{x}$+a-2有且僅有三個零點,設(shè)f(x)=0,可得|x-a|-$\frac{3}{x}$+a=2,
設(shè)g(x)=|x-a|-$\frac{3}{x}$+a,h(x)=2,則函數(shù)g(x)=$\left\{\begin{array}{l}{2a-x-\frac{3}{x},x≤a}\\{x-\frac{3}{x},x>a}\end{array}\right.$.
不妨設(shè)f(x)=0的3個根為x1,x2,x3,且x1<x2<x3,
當x>a時,由f(x)=0,解得x=-1,或x=3;
若 ①a≤-1,此時 x2=-1,x3=3,由等差數(shù)列的性質(zhì)可得x1=-5,
由f(-5)=2a+5+$\frac{3}{5}$-2=0,解得a=-$\frac{9}{5}$,滿足f(x)=0在(-∞,a]上有一解.
若②-1<a≤3,則f(x)=0在(-∞,a]上有兩個不同的解,不妨設(shè)x1,x2,其中x3=3,
所以有x1,x2是2a-x-$\frac{3}{x}$=2的兩個解,即x1,x2是x2-(2a-2)x+3=0的兩個解.
得到x1+x2=2a-2,x1x2=3,
又由設(shè)f(x)=0的3個根為x1,x2,x3成差數(shù)列,且x1<x2<x3,得到2x2=x1+3,
解得:a=$\frac{5+3\sqrt{33}}{8}$或$\frac{5-3\sqrt{33}}{8}$(舍去).
③a>3,f(x)=0最多只有兩個解,不滿足題意;
綜上所述,a=$\frac{5+3\sqrt{33}}{8}$或-$\frac{9}{5}$,
故答案為:{$\frac{5+3\sqrt{33}}{8}$,-$\frac{9}{5}$ }.
點評 本題考查了分段函數(shù)的應(yīng)用及分類討論的思想應(yīng)用,同時考查了等差數(shù)列的中項的性質(zhì),屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰直角三角形 | C. | 正三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 16 | C. | 18 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2n(n∈Z) | B. | 2n-1(n∈Z) | C. | 4n+1(n∈Z) | D. | 4n-1(n∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com