【題目】按下面的流程圖進(jìn)行計算.若輸出的,則輸入的正實數(shù)值的個數(shù)最多為( )

A. B. C. D.

【答案】A

【解析】程序框圖的用途是數(shù)列求和,當(dāng)x>100時結(jié)束循環(huán),輸出x的值為202:

當(dāng)202=3x+1,解得x=67;即輸入x=67時,輸出結(jié)果202.

202=3(3x+1)+1,解得x=22;即輸入x=22時,輸出結(jié)果202.

202=3(3(3x+1)+1)+1.即201=3(3(3x+1)+1),

∴67=3(3x+1)+1,即22=3x+1,解得x=7,輸入x=7時,輸出結(jié)果202.

202=3(3(3(3x+1)+1)+1)+1.解得x=2,輸入x=2時,輸出結(jié)果202.

202=3(3(3(3(3x+1)+1)+1)+1)+1.解得x=,輸入x=時,輸出結(jié)果202.

共有5個不同的x。

故答案為A。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

Ⅰ)當(dāng)時,求函數(shù)在區(qū)間上的最大值與最小值;

Ⅱ)當(dāng)的圖像經(jīng)過點時,求的值及函數(shù)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為等腰梯形, , 沿對角線將旋轉(zhuǎn),使得點至點的位置,此時滿足.

(1)判斷的形狀,并證明;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 命題“若,則”的逆否命題為“若,則

B. 若命題, ”,則命題的否定為“,

C. ”是“”的充分不必要條件

D. ”是“直線與直線互為垂直”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點,曲線的參考方程為為參數(shù)).

(1)求曲線上的點到直線的距離的最大值與最小值;

(2)過點與直線平行的直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個空間幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1),上的單調(diào)區(qū)間;

(2), 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右有頂點分別是、,上頂點是,圓的圓心到直線的距離是,且橢圓的右焦點與拋物線的焦點重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內(nèi)的交點分別為、,直線、軸的交點記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.

查看答案和解析>>

同步練習(xí)冊答案