分析 (Ⅰ)利用三角恒等變換化簡f(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)的增區(qū)間.
(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,從而求得g($\frac{π}{6}$)的值.
解答 解:(Ⅰ)∵f(x)=2$\sqrt{3}$sin(π-x)sinx-(sinx-cosx)2 =2$\sqrt{3}$sin2x-1+sin2x=2$\sqrt{3}$•$\frac{1-cos2x}{2}$-1+sin2x
=sin2x-$\sqrt{3}$cos2x+$\sqrt{3}$-1=2sin(2x-$\frac{π}{3}$)+$\sqrt{3}$-1,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(Ⅱ)把y=f(x)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),可得y=2sin(x-$\frac{π}{3}$)+$\sqrt{3}$-1的圖象;
再把得到的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=g(x)=2sinx+$\sqrt{3}$-1的圖象,
∴g($\frac{π}{6}$)=2sin$\frac{π}{6}$+$\sqrt{3}$-1=$\sqrt{3}$.
點評 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求函數(shù)的值,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{π}{4}$] | B. | (0,$\frac{π}{3}$] | C. | (0,$\frac{π}{2}$] | D. | ($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com